XIBILIA, MARIA GABRIELLA

XIBILIA, MARIA GABRIELLA  

Mostra records
Risultati 1 - 12 di 12 (tempo di esecuzione: 0.012 secondi).
Titolo Data di pubblicazione Autore(i) File
Application of electrochemical impedance spectroscopy for prediction of fuel cell degradation by LSTM neural networks 1-gen-2021 Caponetto, R.; Guarnera, N.; Matera, F.; Privitera, E.; Xibilia, M. G. file da validare
Carbon black based fractional order element: Wien oscillator implementation 1-gen-2019 Buscarino, A.; Caponetto, R.; Murgano, Emanuele; Xibilia, M. G.
Deep Learning for Soft Sensor Design 1-gen-2020 Graziani, S.; Xibilia, M. G. file da validare
Fuel cell fractional-order model via electrochemical impedance spectroscopy 1-gen-2021 Caponetto, R.; Matera, F.; Murgano, E.; Privitera, E.; Xibilia, M. G. file da validare
Implementation of a fully analog feedback loop with a Carbon-Black-based fractional order controller 1-gen-2022 Avon, G.; Caponetto, R.; Murgano, E.; Xibilia, M. G. file da validare
Improving Monitorino of NOx Emissions in Refineries 1-gen-2004 Graziani, S.; Pitrone, N.; Xibilia, M. G.; Barbalace, N. file da validare
Improving soft sensors performance in the presence of small datasets by data selection 1-gen-2020 Graziani, S.; Xibilia, M. G. file da validare
Innovative topologies and algorithms for neural networks 1-gen-2020 Graziani, S.; Xibilia, M. G.
Input selection methods for data-driven Soft sensors design: Application to an industrial process 1-gen-2020 Curreri, F.; Graziani, S.; Xibilia, M. G. file da validare
Model order reduction: A comparison between integer and non-integer order systems approaches 1-gen-2019 Caponetto, R.; Machado, J. T.; Murgano, E.; Xibilia, M. G.
Preliminary analysis of the chaotic behavior in hydrogen electrochemical devices 1-gen-2021 Buscarino, A.; Caponetto, R.; de Marco, E.; Matera, F.; Privitera, E.; Xibilia, M. G. file da validare
SC-CNN for Chaotic Signal Applications in Secure Communication Systems 1-gen-2003 Caponetto, R; Occhipinti, L.; Xibilia, M. G.; Fortuna, L file da validare