Ranking is a widely used technique to classify nodes in networks according to their relevance. Increasing one’s rank is a desiderable feature in almost any context; several approaches have been proposed to achieve this goal by exploiting in-links and/or out-links with other existing nodes. In this paper, we focus on the impact of in-links in rank improvement (with PageRank metric) and their distance from starting link. Results for different networks both in type and size show that the best improvement comes from long distance nodes rather than neighbours, somehow subverting the commonly adopted social-based approach.

Long distance in-links for ranking enhancement

Carchiolo, V.;Grassia, M.;Longheu, A.;Malgeri, M.;Mangioni, G.
2018-01-01

Abstract

Ranking is a widely used technique to classify nodes in networks according to their relevance. Increasing one’s rank is a desiderable feature in almost any context; several approaches have been proposed to achieve this goal by exploiting in-links and/or out-links with other existing nodes. In this paper, we focus on the impact of in-links in rank improvement (with PageRank metric) and their distance from starting link. Results for different networks both in type and size show that the best improvement comes from long distance nodes rather than neighbours, somehow subverting the commonly adopted social-based approach.
2018
978-3-319-99625-7
978-3-319-99626-4
Artificial Intelligence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/361762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact