We study the Apéry Set of good subsemigroups of N^2, a class of semigroups containing the value semigroups of curve singularities with two branches. Even if this set is infinite, we show that, for the Apéry Set of such semigroups, we can define a partition in "levels" that allows to generalize many properties of the Apéry Set of numerical semigroups, i.e. value semigroups of one-branch singularities.

The Apéry Set of a Good Semigroup

D'Anna M.;GUERRIERI, LORENZO;Micale V
2020

Abstract

We study the Apéry Set of good subsemigroups of N^2, a class of semigroups containing the value semigroups of curve singularities with two branches. Even if this set is infinite, we show that, for the Apéry Set of such semigroups, we can define a partition in "levels" that allows to generalize many properties of the Apéry Set of numerical semigroups, i.e. value semigroups of one-branch singularities.
value semigroups, algebroid curves, Gorenstein rings, symmetric semi- groups, Apéry Set
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/366486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact