The paper introduces a new approach for designing a data-driven Soft Sensor for a plant, in the presence of an unknown measurement delay. More specifically, Deep Belief Networks are used for determining the Soft Sensor. The latent features, obtained after the unsupervised learning phase, are exploited for estimating the measurement delay. The procedure is applied to the design of a Soft Sensor for a debutanizer, which is a part of a refinery settled in Sicily. Both the procedure, required for the Soft Sensor design and the obtained results are reported in the paper.
Titolo: | Design of a soft sensor for an industrial plant with unknown delay by using deep learning |
Autori interni: | |
Data di pubblicazione: | 2019 |
Serie: | |
Handle: | http://hdl.handle.net/20.500.11769/373568 |
ISBN: | 978-1-5386-3460-8 |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
08827074-Design of a soft sensor for an industrial plant.pdf | Versione Editoriale (PDF) | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.