In the degenerative disc disease, an alternative treatment to the traditional arthrodesis, consisting in the fusion of the two adjacent vertebral bodies, is the artificial intervertebral disc. The advantage of an artificial intervertebral disc is that the d.o.f. of the vertebral segment can be saved and the mobility of the spine could be almost restored. Many solutions were proposed in the last decades, most of them consisting in metallic rigid joints able to assure the mobility and to maintain the correct distance between the vertebrae but subject to corrosion, wear and interface problems due to the different stiffness with the biological tissues. Purpose of this paper is the design of a prosthetic device substituting the disc to be placed in the intervertebral zone. Different types of artificial prostheses have been proposed by the authors, based on similarity with physiological discs, then with a central part (nucleus) made of hyperelastic material and an outer containment frame (annulus) consisting of a plastic material with a stiffness high enough to assure the reaction force and to avoid large radial displacements. In our solutions, the external parts (annulus and plates) were modeled by HDPE and the inner part (nucleus) by silicone and hydrogel. All the materials are highly biocompatible. The intention of the authors, moreover, is to permit an easier surgical technique. The prosthesis, in fact, could be mounted void of the nucleus, allowing an easier placement, and filled only after the frame insertion, by injecting the silicone through a syringe. The nucleus was modeled by the Mooney-Rivlin parameters related to elastomers, being the disc subject to large deformations that the materials have to be able to withstand in elastic conditions. The discs are subjected to compressive loads either in the mounting phase or, after the silicone filling, due to the physiological loads.

Design of a new intervertebral disc prosthesis: A numerical approach

Basile G.;Fargione G.
;
Giudice F.
2018

Abstract

In the degenerative disc disease, an alternative treatment to the traditional arthrodesis, consisting in the fusion of the two adjacent vertebral bodies, is the artificial intervertebral disc. The advantage of an artificial intervertebral disc is that the d.o.f. of the vertebral segment can be saved and the mobility of the spine could be almost restored. Many solutions were proposed in the last decades, most of them consisting in metallic rigid joints able to assure the mobility and to maintain the correct distance between the vertebrae but subject to corrosion, wear and interface problems due to the different stiffness with the biological tissues. Purpose of this paper is the design of a prosthetic device substituting the disc to be placed in the intervertebral zone. Different types of artificial prostheses have been proposed by the authors, based on similarity with physiological discs, then with a central part (nucleus) made of hyperelastic material and an outer containment frame (annulus) consisting of a plastic material with a stiffness high enough to assure the reaction force and to avoid large radial displacements. In our solutions, the external parts (annulus and plates) were modeled by HDPE and the inner part (nucleus) by silicone and hydrogel. All the materials are highly biocompatible. The intention of the authors, moreover, is to permit an easier surgical technique. The prosthesis, in fact, could be mounted void of the nucleus, allowing an easier placement, and filled only after the frame insertion, by injecting the silicone through a syringe. The nucleus was modeled by the Mooney-Rivlin parameters related to elastomers, being the disc subject to large deformations that the materials have to be able to withstand in elastic conditions. The discs are subjected to compressive loads either in the mounting phase or, after the silicone filling, due to the physiological loads.
File in questo prodotto:
File Dimensione Formato  
Giudece Design....pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 982.56 kB
Formato Adobe PDF
982.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/374424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact