The effect of the necking combined to that of the strain rate is analysed in dynamic split Hopkinson bar (SHTB) tests, by both experiments and finite elements. Experiments from the literature by Noble et al. are considered here together with other tests ran at the University of Catania. Two different characterization procedures are used for modeling the materials, leading to strain and strain rate-dependent flow stress according to the Johnson-Cook model for the Remco Iron by Noble et al., and to an MLR-based calibration for the FeN steel implemented by fortran subroutines, respectively.After satisfactory validation of the finite elements results and of the dynamic hardening models via comparison to the experimental stress-strain, a detailed investigation on the way the necking perturbation of the stress interacts with the strain rate is carried out, expecially investigating how the ratio of the flow stress/true stress evolves with the strain and the strain rate.Special modifications are introduced to the subroutine modeling the strain rate-promoted dynamic amplification of the stress; the related response from finite elements confirms the outcomes of previous papers, unveiling a new feature of the dynamic stress in SHTB tests and providing new information about the suitability and the accuracy of the modern procedures for the dynamic stress-strain characterization.

Interaction of strain rate and necking on the stress-strain response of uniaxial tension tests by Hopkinson bar

MIRONE, GIUSEPPE;Barbagallo R.
2016-01-01

Abstract

The effect of the necking combined to that of the strain rate is analysed in dynamic split Hopkinson bar (SHTB) tests, by both experiments and finite elements. Experiments from the literature by Noble et al. are considered here together with other tests ran at the University of Catania. Two different characterization procedures are used for modeling the materials, leading to strain and strain rate-dependent flow stress according to the Johnson-Cook model for the Remco Iron by Noble et al., and to an MLR-based calibration for the FeN steel implemented by fortran subroutines, respectively.After satisfactory validation of the finite elements results and of the dynamic hardening models via comparison to the experimental stress-strain, a detailed investigation on the way the necking perturbation of the stress interacts with the strain rate is carried out, expecially investigating how the ratio of the flow stress/true stress evolves with the strain and the strain rate.Special modifications are introduced to the subroutine modeling the strain rate-promoted dynamic amplification of the stress; the related response from finite elements confirms the outcomes of previous papers, unveiling a new feature of the dynamic stress in SHTB tests and providing new information about the suitability and the accuracy of the modern procedures for the dynamic stress-strain characterization.
2016
Strain rate; Hopkinson bar; Necking
File in questo prodotto:
File Dimensione Formato  
Interaction of strain rate and necking.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/38877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 11
social impact