Nowadays there is an increasing need to create eco-sustainable electronic devices. To this purpose we have developed a green sensor based on Localized Surface Plasmon Resonance (LSPR) in a thin slab waveguide of Bacterial Cellulose with ionic liquids (ILs) inside. This sensor platform is obtained by sputtering gold on the surface of a slab waveguide of BC and it could be used to realize disposable biosensors. In this work, we present how different thicknesses of the BC can affect the sensor performance, in terms of sensitivity and resolution. In particular, we have reduced the thickness of the BC slab waveguide to improve the interaction between the light and the LSPR. The experimental setup used for this extrinsic optical fiber LSPR sensor is based on two optical fibers used to connect a white light source and a spectrometer with the green LSPR sensor chip

An LSPR Sensor based on a thin slab waveguide of bacterial cellulose

Di Pasquale, Giovanna;Trigona, Carlo;Graziani, Salvatore;Pollicino, Antonino
2020-01-01

Abstract

Nowadays there is an increasing need to create eco-sustainable electronic devices. To this purpose we have developed a green sensor based on Localized Surface Plasmon Resonance (LSPR) in a thin slab waveguide of Bacterial Cellulose with ionic liquids (ILs) inside. This sensor platform is obtained by sputtering gold on the surface of a slab waveguide of BC and it could be used to realize disposable biosensors. In this work, we present how different thicknesses of the BC can affect the sensor performance, in terms of sensitivity and resolution. In particular, we have reduced the thickness of the BC slab waveguide to improve the interaction between the light and the LSPR. The experimental setup used for this extrinsic optical fiber LSPR sensor is based on two optical fibers used to connect a white light source and a spectrometer with the green LSPR sensor chip
2020
978-1-7281-4460-3
Optical sensors; localized surface plasmon resonance; bacterial cellulose; eco-sustainable sensors; disposible green LSPR sensor
File in questo prodotto:
File Dimensione Formato  
09129527.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/457893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact