The topic presented in this paper is a self-generating PiezoMUMPs integrated sensor for inertial measurements. In particular authors have conceived a suitable design based on a meander structure in order to realize a MEMS device having the following prerogatives: 1) the adoption of an Aluminum Nitride (AlN) layer used as 'active' material to generate an output voltage as function of the measur and (acceleration) without the adoption of supplementary/active conditioning circuits; 2) the use of a meander structure for higher performance, low frequency response and suitable to realize a low-stiffness device with, at the same time, high useful active area for the self-generating piezoelectric material (AlN). It is worth to mention that the proposed system can be used for novel measurement architectures which can be applied in several fields, including inertial measurement for equipments, sensing in environments, biomedical and structural health monitoring. The paper includes the design, fabrication modeling and experiments in order to demonstrate the validity of the proposed device.

Self-generating Microsensor with Meander Architecture for Performance Enhancement in Inertial Systems

Trigona C.;Ando B.;Baglio S.
2019-01-01

Abstract

The topic presented in this paper is a self-generating PiezoMUMPs integrated sensor for inertial measurements. In particular authors have conceived a suitable design based on a meander structure in order to realize a MEMS device having the following prerogatives: 1) the adoption of an Aluminum Nitride (AlN) layer used as 'active' material to generate an output voltage as function of the measur and (acceleration) without the adoption of supplementary/active conditioning circuits; 2) the use of a meander structure for higher performance, low frequency response and suitable to realize a low-stiffness device with, at the same time, high useful active area for the self-generating piezoelectric material (AlN). It is worth to mention that the proposed system can be used for novel measurement architectures which can be applied in several fields, including inertial measurement for equipments, sensing in environments, biomedical and structural health monitoring. The paper includes the design, fabrication modeling and experiments in order to demonstrate the validity of the proposed device.
2019
978-1-7281-1273-2
inertial measurement
MEMS
Microsensor
PiezoMUMPs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/460498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact