We experimentally investigated Ag nanoplates as saturable absorber for Q-switched pulse generation in an Yb-doped fiber laser. The pulse train repetition rate increases with the increase of the pump power. At the maximum pump power of 600 mW, the maximum repetition rate and average output power are 184.8 kHz and 10.77 mW, respectively, corresponding to single pulse energy of 58.3 nJ. To the best of our knowledge, it is the first demonstration of the passively Q-switched fiber laser utilizing the material of Ag nanoparticles at the wavelength of 1-μm. Our investigations demonstrate the flexibility of our solution-processed Ag nanoplates-based saturable absorber, making it a promising candidate for a variety of stable and low-cost ultrafast lasers.

Passively Q-switched Yb-doped fiber laser based on Ag nanoplates saturable absorber

Scardaci, Vittorio
2020-01-01

Abstract

We experimentally investigated Ag nanoplates as saturable absorber for Q-switched pulse generation in an Yb-doped fiber laser. The pulse train repetition rate increases with the increase of the pump power. At the maximum pump power of 600 mW, the maximum repetition rate and average output power are 184.8 kHz and 10.77 mW, respectively, corresponding to single pulse energy of 58.3 nJ. To the best of our knowledge, it is the first demonstration of the passively Q-switched fiber laser utilizing the material of Ag nanoparticles at the wavelength of 1-μm. Our investigations demonstrate the flexibility of our solution-processed Ag nanoplates-based saturable absorber, making it a promising candidate for a variety of stable and low-cost ultrafast lasers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/483966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact