This paper investigates the transient hygrothermal performance of an innovative energy and seismic renovation solution for reinforced concrete (RC) framed buildings, based on the addition of Cross-Laminated Timber (CLT) panels to the outer walls, in combination with wood-based insulation. This solution is being developed in the framework of a four-year EU-funded project called e-SAFE. The investigation relies on numerical simulations in DELPHIN 6.1, by considering combined heat and mass transfer (HAMT) due to water vapour diffusion and capillary transport. The proposed solution is tested in three different climates in Italy, to verify whether the CLT layer and the outer waterproof vapour-open membrane, inserted to protect the wood-based insulation from rain, still allow the effective drying of the vapour accumulated in liquid form in the walls, while also preventing mould formation. The results show that the increased thermal resistance of the wall assembly significantly reduces the total water content, although moderate risks of mould growth in the wooden materials may occur in coldest climates.

Preliminary investigation on the transient hygrothermal analysis of a CLT-based retrofit solution for exterior walls

Vincenzo Costanzo
Primo
Membro del Collaboration Group
;
Gianpiero Evola
Membro del Collaboration Group
;
Luigi Marletta
Membro del Collaboration Group
;
2021-01-01

Abstract

This paper investigates the transient hygrothermal performance of an innovative energy and seismic renovation solution for reinforced concrete (RC) framed buildings, based on the addition of Cross-Laminated Timber (CLT) panels to the outer walls, in combination with wood-based insulation. This solution is being developed in the framework of a four-year EU-funded project called e-SAFE. The investigation relies on numerical simulations in DELPHIN 6.1, by considering combined heat and mass transfer (HAMT) due to water vapour diffusion and capillary transport. The proposed solution is tested in three different climates in Italy, to verify whether the CLT layer and the outer waterproof vapour-open membrane, inserted to protect the wood-based insulation from rain, still allow the effective drying of the vapour accumulated in liquid form in the walls, while also preventing mould formation. The results show that the increased thermal resistance of the wall assembly significantly reduces the total water content, although moderate risks of mould growth in the wooden materials may occur in coldest climates.
2021
hygrothermal analysis; CLT; building simulation; moisture transfer
File in questo prodotto:
File Dimensione Formato  
Costanzo_2021_J._Phys.__Conf._Ser._2042_012142.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/514880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact