Composites obtained by bio-derived polymers are promising materials for the realization of green sensors. Bio-derived composites consisting of a sheet of bacterial cellulose, covered on both faces by two layers of conducting polymers and infused by ionic liquids have been demonstrated to have generating properties when used as deformation sensor. In the paper, the frequency analysis of the composite is investigated in order to experimentally determine the dependence of the transduction property on the frequency of the applied mechanical deformation. A model has been proposed to fit experimental data.

Modeling of a Bacterial Cellulose-based Composite in Bending Configuration

Caponetto, Riccardo;Di Pasquale, Giovanna;Graziani, Salvatore;Pollicino, Antonino;Trigona, Carlo
2022-01-01

Abstract

Composites obtained by bio-derived polymers are promising materials for the realization of green sensors. Bio-derived composites consisting of a sheet of bacterial cellulose, covered on both faces by two layers of conducting polymers and infused by ionic liquids have been demonstrated to have generating properties when used as deformation sensor. In the paper, the frequency analysis of the composite is investigated in order to experimentally determine the dependence of the transduction property on the frequency of the applied mechanical deformation. A model has been proposed to fit experimental data.
978-1-6654-0981-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/537159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact