Egocentric action anticipation consists in predicting a future action the camera wearer will perform from egocentric video. While the task has recently attracted the attention of the research community, current approaches assume that the input videos are “trimmed”, meaning that a short video sequence is sampled a fixed time before the beginning of the action. We argue that, despite the recent advances in the field, trimmed action anticipation has a limited applicability in real-world scenarios where it is important to deal with “untrimmed” video inputs and it cannot be assumed that the exact moment in which the action will begin is known at test time. To overcome such limitations, we propose an untrimmed action anticipation task, which, similarly to temporal action detection, assumes that the input video is untrimmed at test time, while still requiring predictions to be made before the actions actually take place. We propose an evaluation procedure for methods designed to address this novel task, and compare several baselines on the EPIC-KITCHENS-100 dataset. Experiments show that the performance of current models designed for trimmed action anticipation is very limited and more research on this task is required.

Untrimmed Action Anticipation

Rodin I.;Furnari A.;Farinella G. M.
2022-01-01

Abstract

Egocentric action anticipation consists in predicting a future action the camera wearer will perform from egocentric video. While the task has recently attracted the attention of the research community, current approaches assume that the input videos are “trimmed”, meaning that a short video sequence is sampled a fixed time before the beginning of the action. We argue that, despite the recent advances in the field, trimmed action anticipation has a limited applicability in real-world scenarios where it is important to deal with “untrimmed” video inputs and it cannot be assumed that the exact moment in which the action will begin is known at test time. To overcome such limitations, we propose an untrimmed action anticipation task, which, similarly to temporal action detection, assumes that the input video is untrimmed at test time, while still requiring predictions to be made before the actions actually take place. We propose an evaluation procedure for methods designed to address this novel task, and compare several baselines on the EPIC-KITCHENS-100 dataset. Experiments show that the performance of current models designed for trimmed action anticipation is very limited and more research on this task is required.
2022
978-3-031-06432-6
978-3-031-06433-3
Action anticipation
Egocentric vision
Untrimmed video processing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/540580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 4
social impact