Numerical codes can play an important function in the nautical design when advanced simulation tools are increasingly adopted for prediction purposes, and in particular for the calculation of the interaction between boat parts and surrounding fluids. Fluid-structure interaction analysis (FSI) can help engineers to set the optimum design of a sail and also the influence of panels and battens sail arrangement. The paper describes a methodology that enhances the understanding of panel and battens arrangement, as well as their stiffness on sail performance. Specifically, through the battens position, shape and stiffness parametrization, the sail non-developable shape was optimized, in order to compensate the variation in the angle of attack that occurs following variations in the speed of the wind at different sail heights. For an efficient and robust implementation of integrated Reynolds Averaged Navier Stokes (RANS) equations with Shear Stress Transport (SST) turbulence model and Computational Structural Mechanics (CSM) analysis, the constitutive sailcloth and battens characterization was conducted experimentally. The case study of a mainsail in Dacron© TNF 240 of a Vaurien dinghy boat, offered tangible results to support the methodology by validating it with experimental data.

Battens Modelling and Optimization in Air-Sail Interaction Analysis

Cali Michele
Primo
Conceptualization
;
Oliveri S. M.
2022-01-01

Abstract

Numerical codes can play an important function in the nautical design when advanced simulation tools are increasingly adopted for prediction purposes, and in particular for the calculation of the interaction between boat parts and surrounding fluids. Fluid-structure interaction analysis (FSI) can help engineers to set the optimum design of a sail and also the influence of panels and battens sail arrangement. The paper describes a methodology that enhances the understanding of panel and battens arrangement, as well as their stiffness on sail performance. Specifically, through the battens position, shape and stiffness parametrization, the sail non-developable shape was optimized, in order to compensate the variation in the angle of attack that occurs following variations in the speed of the wind at different sail heights. For an efficient and robust implementation of integrated Reynolds Averaged Navier Stokes (RANS) equations with Shear Stress Transport (SST) turbulence model and Computational Structural Mechanics (CSM) analysis, the constitutive sailcloth and battens characterization was conducted experimentally. The case study of a mainsail in Dacron© TNF 240 of a Vaurien dinghy boat, offered tangible results to support the methodology by validating it with experimental data.
2022
978-3-030-91233-8
978-3-030-91234-5
CFD-CSM analysis
Flying shape
Sail battens arrangement
SST model
Triangular membrane modeling
Twisting
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/545289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact