Model-based approaches aiming to characterize human behavior when interacting with a controlled machine have been a matter of research investigation in various domains, from aerospace to semi-autonomous driving and robotics. Human-robot collaboration is one of the most exciting scenarios of application in which a continuous physical interaction between humans and the controlled plant is present. In this context, the human subject can adapt its control behavior to the external sensed dynamics. This capability has a significant observable effect on the control delay, making its characterization and prevision a crucial aspect to understand. This work investigates a linear modeling approach that uniquely describes human and robot control actions and applies to a collaborative robotic task.

Modeling of control delay in human-robot collaboration

Fortuna L.
2022-01-01

Abstract

Model-based approaches aiming to characterize human behavior when interacting with a controlled machine have been a matter of research investigation in various domains, from aerospace to semi-autonomous driving and robotics. Human-robot collaboration is one of the most exciting scenarios of application in which a continuous physical interaction between humans and the controlled plant is present. In this context, the human subject can adapt its control behavior to the external sensed dynamics. This capability has a significant observable effect on the control delay, making its characterization and prevision a crucial aspect to understand. This work investigates a linear modeling approach that uniquely describes human and robot control actions and applies to a collaborative robotic task.
2022
978-1-6654-8025-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/558144
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact