The optimization of job offloading procedures in modern vehicular networks is a problem of utmost importance. In this regard, this paper proposes MANTRA, a distributed framework based on multi-player multi-Armed bandit (MP-MAB) algorithms for latency-And energy-Aware job offloading in vehicular networks. The main goal of MANTRA is to support procedures of job offloading in green vehicular networks to achieve a target tradeoff between energy consumption and job processing latency. In particular, MANTRA is intended to run on so-called MEC-in-A-box (M-Box) devices, portable battery-powered Road Side Units (RSUs) specifically designed to work without mobile connectivity and of a fixed power grid.To demonstrate MANTRA effectiveness, we model the vehicular network using the queueing theory for M/M/m/K systems. We run an extensive evaluation campaign and compare MANTRA with several baselines, including a centralized, oracle-based approach. In such a way, we demonstrate how MANTRA outperforms the baselines and quickly converges to the performance of the centralized approach in a fully-distributed way in terms of job processing latency and network outage probability.
MANTRA: An Edge-Computing Framework based on Multi-Armed Bandit for Latency-And Energy-Aware Job Offloading in Vehicular Networks
Busacca F.;Palazzo S.;Raftopoulos R.;Schembra G.
2023-01-01
Abstract
The optimization of job offloading procedures in modern vehicular networks is a problem of utmost importance. In this regard, this paper proposes MANTRA, a distributed framework based on multi-player multi-Armed bandit (MP-MAB) algorithms for latency-And energy-Aware job offloading in vehicular networks. The main goal of MANTRA is to support procedures of job offloading in green vehicular networks to achieve a target tradeoff between energy consumption and job processing latency. In particular, MANTRA is intended to run on so-called MEC-in-A-box (M-Box) devices, portable battery-powered Road Side Units (RSUs) specifically designed to work without mobile connectivity and of a fixed power grid.To demonstrate MANTRA effectiveness, we model the vehicular network using the queueing theory for M/M/m/K systems. We run an extensive evaluation campaign and compare MANTRA with several baselines, including a centralized, oracle-based approach. In such a way, we demonstrate how MANTRA outperforms the baselines and quickly converges to the performance of the centralized approach in a fully-distributed way in terms of job processing latency and network outage probability.File | Dimensione | Formato | |
---|---|---|---|
MANTRA_an_Edge-Computing_Framework_based_on_Multi-Armed_Bandit_for_Latency-_and_Energy-aware_Job_Offloading_in_Vehicular_Networks.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.