The objective of the thesis is to develop a multiscale model and a related numerical tool for the simulation of surfactants (anions and cations) in presence of an oscillating bubble, which acts as a trap for the anions. The treatment of diffusion of ions in presence of a (possibly moving) trap is an interesting interdisciplinary problem, as illustrated in the Introduction. The starting mathematical description of the system is based on a drift-diffusion model. In spite of the apparent simplicity of the model, from the computational point of view the problem is a challenging one, for various reasons. First, the problem is intrinsically multiscale in space, because the range of interaction between the bubble and the anions (nanometers) is orders of magnitude smaller than the size of the domain of interest (millimeters). Second, if the bubble oscillates then the diffusion of the ions is coupled with the motion of the fluid which has to be computed in a moving domain. Third, in typical experiments with an oscillating bubble, the period of oscillations (few milliseconds) is orders of magnitude smaller than the diffusion time (hours). Fourth, the assumption of quasi-neutrality and low ion concentration, which is usually very reasonable in the bulk, may become inappropriate near the bubble surface. In this thesis the problem is analysed in detail in the context of a convection-drift-diffusion model: the ions satisfy a drift-diffusion equation, subject to a potential describing their Coulomb attraction and the interaction with the bubble, while the underlying fluid satisfies incompressible Navier-Stokes equation in a moving domain. The following original results are obtained. A multiscale single carrier model has been derived, which describes the interaction of the bubble on the anions by a suitable boundary condition of the diffusion equation for the ions, derived by mass conservation and asymptotic analysis in the region near the trap. The method is obtained by discretizing the equations on a regular Cartesian grid with ghost points, and the bubble is described by a level set function. The resulting large sparse linear system is efficiently solved by a multigrid technique. The validity of the model is carefully checked in one dimensional and multi-dimensional tests (chapters 6-7). An efficient method is proposed for the numerical solution of the Stokes equations in a domain with a moving bubble (chapters 8-9). Two techniques are adopted to simulate the motion of the boundary: i) Stokes equations are solved in a fixed domain and the motion of the boundary is replaced by a suitable imposed fluid flux (chapter 8), ii) the equations are solved on a moving domain, and the motion of the boundary is described by a time dependent level-set function (chapter 9); in the same chapter the two approaches are compared. A new technique is developed to solve the multiscale problem in time (chapter 11). The technique is based on the assumption that the motion of the bubble and the fluid are periodic in time, with a period which is much shorter than typical diffusion time. This technique allows an accurate computation of the solution using time steps which are much larger than the oscillation period. The multi-scale model is extended to take into account the effect of saturation (i.e. non negligible concentration) near the boundary (chapter 12), and to the case of two carriers (anions and cations) diffusion, interacting by a self-consistent electrostatic potential (chapter 13). The coupling between charge neutrality and multiscale multi carriers model is still work in progress.
L'obiettivo della tesi è quello di sviluppare modelli multiscala e metodi numerici per la simulazione di surfattanti (anioni e cationi) in presenza di una bolla oscillante che si comporta come una trappola per gli anioni E' un problema interdisciplinare e la trattazione è approfondita nell'Introduzione. La decrizione matematica del problema inzialmente prevede un modello di trasporto-diffusione ed è risultato essere un problema molto complicato per diversi motivi: prima di tutto il problema prevede lo studio di diverse scale nello spazio perchè l'attrazione tra la bolla e gli anioni è dell'ordine dei nanometri mentre il dominio è dell'ordine dei millimetri. Inoltre, quando consideriamo una bolla oscillante, il problema viene accoppiato allo studio di un dominio oscillante. Per quanto riguarda il problema di multiscala, abbiamo diversi ordini anche nel tempo. Il periodo di oscillazione è di circa qualche millisecondo mentre il periodo di diffusione dell'intero fenomeno è di circa qualche ora. Infine, l'ipotesi di quasi-neutralità risulta essere una buona approssimazione per quei punti del dominio che non si trovano in prossimità della superficie della bolla. In questa tesi il problema è stato studiato tramite un'equazione di convezione-trasporto-diffusione: gli ioni negativi e positivi soddisfano un'equazione di trasporto-diffusione per la presenza di un potenziale che descrivi l'interazione della bolla. Il fluido circostante, invece, soddisfa un'equazione di Navier-Stokes per fluidi incomprimibili in un dominio oscillante. I risultati originali che abbiamo ottenuto sono: un metodo multiscala per un singolo ione che sostituisce l'azione del potenziale con una nuova condizione al contorno da accoppiare all'equazione di diffusione per gli ioni, derivata dalla conservazione della massa e dall'analisi asintotica nella regione vicina alla trappola. Il metodo è ottenuto discretizzando le equazione in un griglia Cartesiana regolare con punti ghost e la bolla è descritta da una funzione di level-set. Il grande sistema lineare sparso che ne viene fuori è risolto dal metodo multigrid. Il metodo è validato in 1D e 2D in domini semplici (capitolo 6) e geometrie più complicate in 2D e 3D (capitolo 7). Riguardo la risoluzione delle equazioni di Stokes in un dominio mobile abbiamo sviluppato due metodologie: da una parte abbiamo un dominio fisso con una condizione al contorno che dipende dal tempo (capitolo 8) e dall'altra abbiamo un'equazione di Stokes definita su un dominio mobile definito tramite una funzione di level-set che dipende dal tempo (capitolo 9). Nello stesso capitolo troviamo vari confronti tra i due approcci. Nel capitolo 11 sviluppiamo dei metodi per la trattazione del multiscala temporale che sfruttano la teoria della media e riescono ad ottenere una buona accuratezza senza alcuna restrizione sul passo temporale. E' stato anche sviluppato un modello sull'effetto di saturazione che tiene in considerazione una concentrazione non trascurabile vicino alla superficie della bolla (capitolo 12) e un modello sull'interazione delle due specie di ioni che interagiscono tramite un potenziale elettrostatico. Questi due ultimi modelli sono ancora in face di sviluppo.
Multiscale modeling and numerics of sorption kinetics / Astuto, Clarissa. - (2021 Feb 16).
Multiscale modeling and numerics of sorption kinetics
ASTUTO, CLARISSA
2021-02-16
Abstract
The objective of the thesis is to develop a multiscale model and a related numerical tool for the simulation of surfactants (anions and cations) in presence of an oscillating bubble, which acts as a trap for the anions. The treatment of diffusion of ions in presence of a (possibly moving) trap is an interesting interdisciplinary problem, as illustrated in the Introduction. The starting mathematical description of the system is based on a drift-diffusion model. In spite of the apparent simplicity of the model, from the computational point of view the problem is a challenging one, for various reasons. First, the problem is intrinsically multiscale in space, because the range of interaction between the bubble and the anions (nanometers) is orders of magnitude smaller than the size of the domain of interest (millimeters). Second, if the bubble oscillates then the diffusion of the ions is coupled with the motion of the fluid which has to be computed in a moving domain. Third, in typical experiments with an oscillating bubble, the period of oscillations (few milliseconds) is orders of magnitude smaller than the diffusion time (hours). Fourth, the assumption of quasi-neutrality and low ion concentration, which is usually very reasonable in the bulk, may become inappropriate near the bubble surface. In this thesis the problem is analysed in detail in the context of a convection-drift-diffusion model: the ions satisfy a drift-diffusion equation, subject to a potential describing their Coulomb attraction and the interaction with the bubble, while the underlying fluid satisfies incompressible Navier-Stokes equation in a moving domain. The following original results are obtained. A multiscale single carrier model has been derived, which describes the interaction of the bubble on the anions by a suitable boundary condition of the diffusion equation for the ions, derived by mass conservation and asymptotic analysis in the region near the trap. The method is obtained by discretizing the equations on a regular Cartesian grid with ghost points, and the bubble is described by a level set function. The resulting large sparse linear system is efficiently solved by a multigrid technique. The validity of the model is carefully checked in one dimensional and multi-dimensional tests (chapters 6-7). An efficient method is proposed for the numerical solution of the Stokes equations in a domain with a moving bubble (chapters 8-9). Two techniques are adopted to simulate the motion of the boundary: i) Stokes equations are solved in a fixed domain and the motion of the boundary is replaced by a suitable imposed fluid flux (chapter 8), ii) the equations are solved on a moving domain, and the motion of the boundary is described by a time dependent level-set function (chapter 9); in the same chapter the two approaches are compared. A new technique is developed to solve the multiscale problem in time (chapter 11). The technique is based on the assumption that the motion of the bubble and the fluid are periodic in time, with a period which is much shorter than typical diffusion time. This technique allows an accurate computation of the solution using time steps which are much larger than the oscillation period. The multi-scale model is extended to take into account the effect of saturation (i.e. non negligible concentration) near the boundary (chapter 12), and to the case of two carriers (anions and cations) diffusion, interacting by a self-consistent electrostatic potential (chapter 13). The coupling between charge neutrality and multiscale multi carriers model is still work in progress.File | Dimensione | Formato | |
---|---|---|---|
Tesi di dottorato - ASTUTO CLARISSA 20210129225230.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
38.8 MB
Formato
Adobe PDF
|
38.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.