In recent years, the implementation of wireless communication systems in industrial environments has significantly increased, so ad-hoc Industrial Wireless Sensor Network (IWSN)s have been proposed. IWSNs are expected to support a wide range of real-time applications in which nodes, for example robots or humans, interoperate between them and with machinery. One of the challenges will be the integration of IWSNs with the Industrie 4.0 paradigm. Consequently, billions of objects, equipped with sensors and radio interfaces, will enrich the industries with the aim of collecting and processing data from the environment, allowing for a more efficient use of the resources and improved quality of life for the workers. The Industrie 4.0 paradigm also requires support for mobility (of both workers and devices) while supporting real-time behaviour. However, the real-time constraints imposed by the industrial applications make mobility support quite challenging. For example, the topology of a network made up of mobile nodes can change faster than the convergence time of its routing algorithm, thus leading to unpredictable delays and packet loss. To date, given the broad spectrum of industrial applications and constraints to be tack-led, there is not a one-fits-all solution, but rather a plethora of vertical application-specific solutions. Among them, Zigbee, WirelessHART and ISA100.11a ,that are all based on the IEEE 802.15.4 standard, thus resulting in an extremely fragmented context and market. The requirements in terms of mobility imposed by Industrie 4.0 cannot be satisfied by any of the above mentioned solutions.The above problems could be overcome by making wireless sensor networks programmable and managing the control plane in a centralized way. Recently the Software-Defined Networking (SDN) paradigm has been proposed to solve analogous issues in the wired domain. The separation of the control plane from the data plane is the distinguishing factor of SDN. In other terms, the control is implemented in software and decoupled from hardware. Moreover, SDN allows for reusing of resources and increasing the network ability to react to topology changes, since the controller has an always updated view of the network topology. Thanks to this architecture, the controller has the possibility to select the best path for the packets constantly. The work presented in this thesis mainly focuses on the Time-Slotted Channel Hopping (TSCH) mode, which is defined in the IEEE 802.15.4-2015 standard. TSCH is one of the most popular channel access mechanisms that are suitable for IWSNs. TSCH does offer bounded packet latency, high reliability, scalability and transmission rate up to 250 Kbit/s, but it does not natively support mobility. For this reason, in this thesis a new protocol stack, based on SDN and TSCH, is proposed for the interconnection of mobile sensors in an industrial environment. The protocol stack here proposed complies with the mobility, reliability and timeliness requirements imposed by the industrial environment. Furthermore, the work shows that applying a clustering technique, the network performance and scalability improve. Another challenge is to support applications with high bit rates in IWSNs for Industrie 4.0, since, as it was highlighted in the experiments reported in, the data rates observed by a sensor node with a streaming application using IEEE 802.15.4 is about 42 kbps when working in non-beacon-enabled mode, and it is about 4 kbps using the beacon-enabled mode. So, even modest IWSN-based monitoring systems using raw data transmission can saturate the available payload bandwidth. Large amounts of transmitted data also result in the wireless radio transceiver being in its active mode for a significant length of time. As the radio transmitter is often the most power-consuming component on an IWSN node, large transmission volumes limit the node lifetime. To cope with these aspects, the second part of the thesis addresses BM, a standard used in an industrial environment, which allows transmission rates higher than TSCH (up to 1 Mbit/s), but does not guarantee bounded delays. BM allows for easy creation of large connection- less mesh networks using a controlled-flooding propagation mechanism, in which relay nodes broadcast the received messages to all neighbors until the message reaches its destination. This model, however, makes BM networks prone to broadcast-storm effects, which can hinder the scalability of the protocol. An appropriate relay node selection is therefore of utmost importance to control network traffic and improve the network performance. In particular, the thesis work addresses the choice of the Relay Selection algorithm to be used in BM networks. Relay selection allows to maintain the network coverage while selecting only a subset of nodes acting as relays, thus allowing for a higher number of nodes working in low power mode. Relay selection techniques strongly impact on the IWSN network performance and allow to reduce the energy consumption, which is another fundamental requirement for IWSNs.
Negli ultimi anni, l'implementazione dei sistemi di comunicazione wireless in ambienti industriali è notevolmente aumentata, pertanto sono state proposte ad-hoc Industrial Wireless Sensor Network (IWSN). Le IWSN dovranno supportare una vasta gamma di applicazioni in tempo reale in cui i nodi, ad esempio robot o umani, interagiscono tra loro e con i macchinari. Una delle sfide sarà l'integrazione delle IWSN con il paradigma di Industria 4.0. Di conseguenza, miliardi di oggetti, dotati di sensori e interfacce radio, arricchiranno le industrie con l'obiettivo di raccogliere ed elaborare dati, consentendo un uso più efficiente delle risorse e una migliore qualità della vita per i lavoratori. Il paradigma dell’Industria 4.0 richiede anche il supporto per la mobilità (sia dei lavoratori che dei dispositivi), supportando nel contempo le comunicazioni in tempo reale. Tuttavia, i vincoli delle comunicazioni in tempo reale imposti dalle applicazioni industriali rendono il supporto alla mobilità piuttosto impegnativo. Ad esempio, la topologia di una rete costituita da nodi mobili può cambiare più rapidamente del tempo di convergenza del suo algoritmo di routing, causando ritardi imprevedibili e perdita di pacchetti. Ad oggi, dato l'elevato numero di applicazioni industriali e vincoli da affrontare, non esiste una soluzione adatta a tutti, ma piuttosto una pletora di soluzioni verticali specifiche per l'applicazione. Tra queste, Zigbee, WirelessHART e ISA100.11a, tutti basati sullo standard IEEE 802.15.4, che si traducono quindi in un contesto e un mercato estremamente frammentati. I requisiti in termini di mobilità imposti dall’Industria 4.0 non possono essere soddisfatti da nessuna delle soluzioni sopra menzionate. I problemi di cui sopra potrebbero essere superati rendendo programmabili le reti di sensori wireless e gestendo il piano di controllo in modo centralizzato. Recentemente è stato proposto il paradigma Software Defined Networking (SDN) per risolvere problemi analoghi nel dominio cablato. La separazione del piano di controllo dal piano dati è il fattore distintivo di SDN. In altri termini, il controllo è implementato nel software e disaccoppiato dall'hardware. Inoltre, SDN consente di riutilizzare le risorse e aumentare la capacità della rete di reagire alle modifiche della topologia, poiché il controller ha una vista sempre aggiornata della topologia di rete. Grazie a questa architettura, il controller ha la possibilità di selezionare costantemente il percorso migliore per i pacchetti. Il lavoro presentato in questa tesi si concentra principalmente sulla modalità Time Slotted Channel Hopping (TSCH), definita nello standard IEEE 802.15.4-2015. TSCH è uno dei meccanismi di accesso al canale più diffuso e adatto alle IWSN. TSCH offre latenza dei pacchetti limitata, alta affidabilità, scalabilità e velocità di trasmissione fino a 250 Kbit/s, ma non supporta la mobilità in modo nativo. Per questo motivo, in questa tesi viene proposto un nuovo stack protocollare, basato su SDN e TSCH, per l'interconnessione di sensori mobili in un ambiente industriale. Lo stack protocollare proposto è conforme ai requisiti di mobilità, affidabilità e tempestività imposti dall'ambiente industriale. Inoltre, il lavoro mostra che l'applicazione di una tecnica di clustering migliora le prestazioni e la scalabilità della rete. Un'altra sfida è supportare le applicazioni con bit rate elevate nelle IWSN per l’Industria 4.0, poiché, come è stato evidenziato negli esperimenti riportati, le bit rate osservate da un nodo sensore con un'applicazione di streaming che utilizza IEEE 802.15.4 è di circa 42 kbps quando funziona in modalità non-beacon-enabled ed è di circa 4 kbps usando la modalità beacon-enabled. Pertanto, anche i modesti sistemi di monitoraggio basati su IWSN che utilizzano la trasmissione di dati grezzi possono saturare la larghezza di banda disponibile. Grandi quantità di dati trasmessi comportano anche che il ricetrasmettitore radio sia in modalità attiva per un periodo di tempo significativo. Poiché il trasmettitore radio è spesso il componente che consuma più energia, grandi volumi di trasmissione limitano la durata del nodo. Per far fronte a questi aspetti, nella seconda parte della tesi viene utilizzato bluetooth mesh (BM), uno standard per ambienti industriali, che consente velocità di trasmissione superiori a TSCH (fino a 1 Mbit/s), ma non garantisce ritardi limitati. BM consente una facile creazione di reti mesh di grandi dimensioni senza connessione utilizzando un meccanismo di propagazione ad inondazione controllata, in cui i nodi relay trasmettono i messaggi ricevuti a tutti i vicini fino a quando il messaggio non raggiunge la sua destinazione. Questo modello, tuttavia, rende le reti BM inclini agli effetti di broadcast-storm, che possono ostacolare la scalabilità del protocollo. Una selezione appropriata dei nodi relay è quindi di massima importanza per controllare il traffico di rete e migliorare le prestazioni della rete. In particolare, il lavoro di tesi affronta la scelta degli algoritmi di selezione dei relè da utilizzare nelle reti BM. La selezione dei nodi relè consente di mantenere la copertura di rete selezionando solo un sottoinsieme di nodi che fungono da relè, consentendo in tal modo un numero maggiore di nodi che funzionano in modalità a basso consumo. Le tecniche di selezione dei relè incidono fortemente sulle prestazioni della rete IWSN e consentono di ridurre il consumo energetico, che è un altro requisito fondamentale per le IWSN.
WIRELESS SENSOR NETWORKS FOR REAL-TIME APPLICATIONS IN INDUSTRY 4.0 / Reno, Marco. - (2020 Jul 10).
WIRELESS SENSOR NETWORKS FOR REAL-TIME APPLICATIONS IN INDUSTRY 4.0
RENO, MARCO
2020-07-10
Abstract
In recent years, the implementation of wireless communication systems in industrial environments has significantly increased, so ad-hoc Industrial Wireless Sensor Network (IWSN)s have been proposed. IWSNs are expected to support a wide range of real-time applications in which nodes, for example robots or humans, interoperate between them and with machinery. One of the challenges will be the integration of IWSNs with the Industrie 4.0 paradigm. Consequently, billions of objects, equipped with sensors and radio interfaces, will enrich the industries with the aim of collecting and processing data from the environment, allowing for a more efficient use of the resources and improved quality of life for the workers. The Industrie 4.0 paradigm also requires support for mobility (of both workers and devices) while supporting real-time behaviour. However, the real-time constraints imposed by the industrial applications make mobility support quite challenging. For example, the topology of a network made up of mobile nodes can change faster than the convergence time of its routing algorithm, thus leading to unpredictable delays and packet loss. To date, given the broad spectrum of industrial applications and constraints to be tack-led, there is not a one-fits-all solution, but rather a plethora of vertical application-specific solutions. Among them, Zigbee, WirelessHART and ISA100.11a ,that are all based on the IEEE 802.15.4 standard, thus resulting in an extremely fragmented context and market. The requirements in terms of mobility imposed by Industrie 4.0 cannot be satisfied by any of the above mentioned solutions.The above problems could be overcome by making wireless sensor networks programmable and managing the control plane in a centralized way. Recently the Software-Defined Networking (SDN) paradigm has been proposed to solve analogous issues in the wired domain. The separation of the control plane from the data plane is the distinguishing factor of SDN. In other terms, the control is implemented in software and decoupled from hardware. Moreover, SDN allows for reusing of resources and increasing the network ability to react to topology changes, since the controller has an always updated view of the network topology. Thanks to this architecture, the controller has the possibility to select the best path for the packets constantly. The work presented in this thesis mainly focuses on the Time-Slotted Channel Hopping (TSCH) mode, which is defined in the IEEE 802.15.4-2015 standard. TSCH is one of the most popular channel access mechanisms that are suitable for IWSNs. TSCH does offer bounded packet latency, high reliability, scalability and transmission rate up to 250 Kbit/s, but it does not natively support mobility. For this reason, in this thesis a new protocol stack, based on SDN and TSCH, is proposed for the interconnection of mobile sensors in an industrial environment. The protocol stack here proposed complies with the mobility, reliability and timeliness requirements imposed by the industrial environment. Furthermore, the work shows that applying a clustering technique, the network performance and scalability improve. Another challenge is to support applications with high bit rates in IWSNs for Industrie 4.0, since, as it was highlighted in the experiments reported in, the data rates observed by a sensor node with a streaming application using IEEE 802.15.4 is about 42 kbps when working in non-beacon-enabled mode, and it is about 4 kbps using the beacon-enabled mode. So, even modest IWSN-based monitoring systems using raw data transmission can saturate the available payload bandwidth. Large amounts of transmitted data also result in the wireless radio transceiver being in its active mode for a significant length of time. As the radio transmitter is often the most power-consuming component on an IWSN node, large transmission volumes limit the node lifetime. To cope with these aspects, the second part of the thesis addresses BM, a standard used in an industrial environment, which allows transmission rates higher than TSCH (up to 1 Mbit/s), but does not guarantee bounded delays. BM allows for easy creation of large connection- less mesh networks using a controlled-flooding propagation mechanism, in which relay nodes broadcast the received messages to all neighbors until the message reaches its destination. This model, however, makes BM networks prone to broadcast-storm effects, which can hinder the scalability of the protocol. An appropriate relay node selection is therefore of utmost importance to control network traffic and improve the network performance. In particular, the thesis work addresses the choice of the Relay Selection algorithm to be used in BM networks. Relay selection allows to maintain the network coverage while selecting only a subset of nodes acting as relays, thus allowing for a higher number of nodes working in low power mode. Relay selection techniques strongly impact on the IWSN network performance and allow to reduce the energy consumption, which is another fundamental requirement for IWSNs.File | Dimensione | Formato | |
---|---|---|---|
Tesi di dottorato - RENO MARCO 20200609104128.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
8.26 MB
Formato
Adobe PDF
|
8.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.