Inhibition of the self-aggregation of monomeric amyloid-β (Aβ) peptides from forming low molecular weight oligomers (LMWs) is a key approach in drug development for Alzheimer’s disease (AD), in which soluble and highly neurotoxic LMWs are produced and aggregate in the brain over time. Furthermore, the incorporation of a fluorescent ligand in the drug scaffold could potentially enable the in vivo visualization of toxic LMWs in biological fluids, progression prediction and differential diagnosis, to finally tailor personalized and precision dosages. With this aim, the term “theranostics” or “theranostic” was recently used to summarize a novel strategy in drug discovery in which diagnostics and therapeutics become a single intervention. With respect to the therapeutic moiety for AD treatment, peptide-based scaffolds encompassing aggregation-prone amino acid sequences of Aβ peptide have been proven to prevent/inhibit Aβ self-assembly by specific binding to the same segment of Aβ. This is like a competition between two molecules, one is the native protein/peptide and the other one is a smaller part of it. This doctoral project aimed at developing a theranostic agent candidate and at evaluating its in vitro efficacy using preclinical models mimicking the physiological conditions at very low concentration levels of Aβ peptides. Specifically, the scaffold consists of a fluorescent zinc porphyrin macrocycle covalently linked, through a GPG peptide spacer, to the aggregation-prone KLVFF central sequence of Aβ40 and Aβ42 peptides (abbr. Zn-Porph). The inhibitory effect on Aβ42 fibril formation was determined by a variety of spectroscopic techniques. In particular, ThT kinetics and CD data showed that Zn-Porph prevented the conformational transition of Aβ42 to a β-sheet structure. MALDI-ToF-MS experiments provided direct evidence that Zn-Porph forms a supramolecular adduct with the monomeric Aβ42. Importantly, this was confirmed the by fluorescence emission spectrum of Zn-Porph, which displayed a significant quenching upon interacting with Aβ42 species. Proteolysis-MALDI-ToF-MS and NMR measurements enabled the identification of the binding sites between Zn-Porph and Aβ42. The KLVFF motif is the main recognition element necessary to observe interaction with the homologous sequence in Aβ42, in synergy with the Zn(II) coordination to the histidine residues in the Aβ peptide. The neuroprotective activity of the Zn-Porph was demonstrated by using primary neuronal or neuron-like differentiated SH-SY5Y cell cultures.We addressed the question whether the Zn-Porph could also inhibit the formation of the neurotoxic LMWs of Aβ40. We deemed that the use of in vitro models of Aβ40 peptide, a more soluble and less aggregation prone than Aβ42, might allow us to better follow at what stage the Zn-Porph could intervene in the oligomerization process over the timescale of our experiments. For the first time, we combined electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) with multivariate statistical analysis (MVA) to compare the IM-MS profiles of multiple samples and to reveal a subset of statistically significant early-stage species of Aβ40 whose formation was inhibited in the samples containing Zn-Porph. The IM-MS-MVA approach revealed that the Zn-Porph alters the distributions of both monomeric and dimeric conformers of Aβ40 inhibiting their formation at the early stage of the aggregation pathway. Despite Zn-Porph:Aβ40 complexes, either with Aβ monomer or its dimer, were not observed in the ESI-IM-MS spectra as compared to the MALDI-ToF-MS ones, our results strongly suggest that Zn-Porph effectively prevents the Aβ early assembly leading to soluble oligomers and insoluble fibrils. Upon the addition of the Zn-Porph to monomeric Aβ40, the features corresponding to its monomeric forms and to the dimeric compact conformation were essentially eliminated and that one of the extended conformation was significantly diminished. This was also an indication that Zn-Porph more likely forms a complex with the dimeric compact conformer being involved in an on-pathway fibrillation process, whereas the extended one could be involved also to the off-pathway leading to amorphous aggregates. Interestingly, the IM-MS experiments revealed the detection of new signals in the samples containing Zn-Porph. The correspondence of the MS/MS patterns predicted using MS/MS database search programs to those ones of the new detected species suggested a porphyrin-catalyzed oxidation at Met-35 of Aβ40. This led to the formation of Aβ40 Met-35(O) monomer and mono-oxidized dimer consisting of one unit of Aβ40 Met-35(O) and another of unmodified Aβ40. On the basis of the above mentioned findings, we concluded that binding to and stabilizing Aβ40 monomer, with concomitant catalyzed oxidation, could be the predominant mechanism of the inhibition of the self-assembly of Aβ by this candidate theranostic agent. The multifunctional fluorescent molecule investigated in this doctoral project shows promising potential as a theranostic agent for the diagnosis and therapy of AD. This remains the biggest challenge in personalized medicine for AD. The optimized statistical approach is innovative to the field of ion mobilitybased analysis of Aβ peptide, and could prove useful also in studies focusing on the in vitro inhibition on Aβ42 assembly and on other aggregation diseases such as Parkinson's (PD) or Amyotrophic lateral sclerosis (ALS).
L'inibizione del processo di auto-aggregazione dei peptidi monomerici di amiloide-β (Aβ) è un approccio chiave nello sviluppo di farmaci per la malattia di Alzheimer (AD), in cui oligomeri a basso peso molecolare (LMW), solubili e altamente neurotossici, sono prodotti e aggregano nel cervello nel tempo. Inoltre, l’inclusione di un ligando fluorescente nello scaffold molecolare potrebbe potenzialmente consentire la visualizzazione in vivo di LMW tossici nei fluidi biologici, la previsione della progressione e la diagnosi differenziale, per poter finalmente personalizzare dosaggi di precisione. A tal proposito, il termine "theranostics" o "theranostic" è stato recentemente utilizzato per sintetizzare una nuova strategia in drug discovery in cui la diagnostica e la terapia diventano un singolo intervento. Per quanto riguarda la parte terapeutica per il trattamento dell'AD, scaffolds a base di peptidi, aventi nella propria struttura aggregation-prone sequenze di aminoacidi del peptide Aβ, è stato dimostrato impediscano/inibiscano l'auto-aggregazione di Aβ mediante legame specifico allo stesso segmento di Aβ. È come si trattasse di una competizione tra due molecole, una è la proteina/peptide nella forma nativa e l'altra è una parte più piccola di essa. Questo progetto di dottorato ha avuto come obiettivi lo sviluppo di un candidato agente teranostico e la valutazione della sua efficacia in vitro utilizzando modelli preclinici che mimano le condizioni fisiologiche a livelli di concentrazione molto bassi di peptidi Aβ. In particolare, lo scaffold molecolare (abbr. Zn-Porph) è costituito da un anello zinco-porfirinico fluorescente, covalentemente legato, tramite uno spacer peptidico di GPG, alla sequenza centrale idrofobica 16–20 (KLVFF) dei peptidi Aβ40 e Aβ42. L'effetto inibitorio sulla fibrillazione di Aβ42 è stato determinato mediante una varietà di tecniche spettroscopiche. In particolare, esperimenti di fluorescenza mediante ThT e i dati ottenuti mediante CD hanno mostrato che Zn-Porph impedisce la transizione conformazionale di Aβ42 in strutture ricche in foglietti β. Gli esperimenti MALDI-ToF-MS and NMR hanno fornito prove dirette che Zn-Porph forma un addotto supramolecolare con Aβ42 in forma monomerica. Questo è stato confermato dallo spettro di emissione di fluorescenza di Zn-Porph che ha mostrato un significativo quenching dovuto all’interazione con le specie Aβ42. Le misure di proteolisi-MALDI-ToF-MS e NMR hanno consentito l'identificazione dei siti d’interazione tra Zn-Porph e Aβ42. Il motivo KLVFF è il principale elemento di riconoscimento necessario per osservare l'interazione con la sequenza omologa in Aβ42, in sinergia con il coordinamento Zn (II) con i residui d’istidina nel peptide Aβ. L'attività neuroprotettiva di Zn-Porph è stata dimostrata utilizzando colture primarie di neuroni corticali o linee cellulari differenziate di neuroblastoma SH-SY5Y. Abbiamo inoltre affrontato la questione se Zn-Porph potesse anche inibire la formazione di LMW neurotossici del peptide Aβ40. Abbiamo ritenuto che l'uso di modelli in vitro del peptide Aβ40, più solubile e meno incline all'auto-aggregazione respetto Aβ42, potesse permetterci di seguire meglio in quale fase lo Zn-Porph potesse intervenire nel processo di oligomerizzazione nel tempo di acquisizione dei nostri esperimenti. Per la prima volta, abbiamo combinato l’electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) (ESI-IM-MS) con l’analisi statistica multivariata (MVA) per confrontare i profili IM-MS di più campioni e per rivelare un sottoinsieme di specie statisticamente significative di Aβ40 la cui formazione è stata inibita nei campioni contenenti Zn-Porph. L'approccio IM-MS-MVA ha rivelato che la Zn-Porph altera la distribuzione di conformatori sia monomerici che dimeri di Aβ40 inibendone la formazione nella fase iniziale del percorso di aggregazione. Nonostante complessi Zn-Porph:Aβ40, con il monomero Aβ o il suo dimero, non sono stati osservati negli spettri ESI-IM-MS rispetto a quelli MALDI-ToF-MS, i nostri risultati suggeriscono fortemente che Zn-Porph previene efficacemente l’auto assemblaggio precoce di Aβ conducente agli oligomeri solubili e alle fibrille insolubili. Con l'aggiunta di Zn-Porph ad Aβ40 monomerico, le features corrispondenti alle sue forme monomeriche e alla conformazione dimerica compatta sono state, infatti, sostanzialmente eliminate, mentre quella corrispondente alla conformazione estesa ha mostrato una intensità significativamente ridotta. Ciò ha anche indicato che Zn-Porph forma un complesso con il conformero compatto del dimero, questo presumibilmente coinvolto in un processo di fibrillazione on-pathway, mentre quello esteso potrebbe essere coinvolto anche in un processo off-pathway conducente alla formazione di aggregati amorfi. È interessante notare che gli esperimenti IM-MS hanno rivelato nuovi segnali nei campioni contenenti Zn-Porph. La corrispondenza dei patterns MS/MS previsti utilizzando MS/MS database search programs con quelli delle nuove specie rilevate ha suggerito un'ossidazione catalizzata dalla porfirina in posizione Met-35 del peptide Aβ40. Ciò ha portato alla formazione di monomero Aβ40 Met-35(O) e dimero mono-ossidato costituito da un'unità di Aβ40Met-35 (O) e un'altra di Aβ40 non modificata. Sulla base dei risultati di cui sopra, abbiamo concluso che, legando e stabilizzando il monomero di Aβ40, con concomitante ossidazione catalizzata, potrebbe essere il meccanismo predominante di inibizione del processo di auto-aggregazione di Aβ da parte di questo candidato agente teranostico. La molecola fluorescente e multifunzionale studiata in questo progetto di dottorato mostra un potenziale promettente come agente teranostico per la diagnosi e la terapia dell'AD. Questa rimane la più grande sfida nella medicina personalizzata per l'AD. L'approccio statistico ottimizzato è innovativo nel campo dell'analisi basata sulla mobilità ionica del peptide Aβ e potrebbe rivelarsi utile anche in studi incentrati sull'inibizione in vitro dell’auto-aggregazione di Aβ42 e su altre malattie dovute a processo di aggregazione proteico/peptidico come Parkinson (PD) o sclerosi laterale amiotrofica (SLA) .
Progettazione, sintesi e caratterizzazione di sistemi biomimetici e molecole ligandi di ioni metallici come agenti teranostici / Lazzaro, Serena. - (2019 Dec 19).
Progettazione, sintesi e caratterizzazione di sistemi biomimetici e molecole ligandi di ioni metallici come agenti teranostici.
LAZZARO, SERENA
2019-12-19
Abstract
Inhibition of the self-aggregation of monomeric amyloid-β (Aβ) peptides from forming low molecular weight oligomers (LMWs) is a key approach in drug development for Alzheimer’s disease (AD), in which soluble and highly neurotoxic LMWs are produced and aggregate in the brain over time. Furthermore, the incorporation of a fluorescent ligand in the drug scaffold could potentially enable the in vivo visualization of toxic LMWs in biological fluids, progression prediction and differential diagnosis, to finally tailor personalized and precision dosages. With this aim, the term “theranostics” or “theranostic” was recently used to summarize a novel strategy in drug discovery in which diagnostics and therapeutics become a single intervention. With respect to the therapeutic moiety for AD treatment, peptide-based scaffolds encompassing aggregation-prone amino acid sequences of Aβ peptide have been proven to prevent/inhibit Aβ self-assembly by specific binding to the same segment of Aβ. This is like a competition between two molecules, one is the native protein/peptide and the other one is a smaller part of it. This doctoral project aimed at developing a theranostic agent candidate and at evaluating its in vitro efficacy using preclinical models mimicking the physiological conditions at very low concentration levels of Aβ peptides. Specifically, the scaffold consists of a fluorescent zinc porphyrin macrocycle covalently linked, through a GPG peptide spacer, to the aggregation-prone KLVFF central sequence of Aβ40 and Aβ42 peptides (abbr. Zn-Porph). The inhibitory effect on Aβ42 fibril formation was determined by a variety of spectroscopic techniques. In particular, ThT kinetics and CD data showed that Zn-Porph prevented the conformational transition of Aβ42 to a β-sheet structure. MALDI-ToF-MS experiments provided direct evidence that Zn-Porph forms a supramolecular adduct with the monomeric Aβ42. Importantly, this was confirmed the by fluorescence emission spectrum of Zn-Porph, which displayed a significant quenching upon interacting with Aβ42 species. Proteolysis-MALDI-ToF-MS and NMR measurements enabled the identification of the binding sites between Zn-Porph and Aβ42. The KLVFF motif is the main recognition element necessary to observe interaction with the homologous sequence in Aβ42, in synergy with the Zn(II) coordination to the histidine residues in the Aβ peptide. The neuroprotective activity of the Zn-Porph was demonstrated by using primary neuronal or neuron-like differentiated SH-SY5Y cell cultures.We addressed the question whether the Zn-Porph could also inhibit the formation of the neurotoxic LMWs of Aβ40. We deemed that the use of in vitro models of Aβ40 peptide, a more soluble and less aggregation prone than Aβ42, might allow us to better follow at what stage the Zn-Porph could intervene in the oligomerization process over the timescale of our experiments. For the first time, we combined electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) with multivariate statistical analysis (MVA) to compare the IM-MS profiles of multiple samples and to reveal a subset of statistically significant early-stage species of Aβ40 whose formation was inhibited in the samples containing Zn-Porph. The IM-MS-MVA approach revealed that the Zn-Porph alters the distributions of both monomeric and dimeric conformers of Aβ40 inhibiting their formation at the early stage of the aggregation pathway. Despite Zn-Porph:Aβ40 complexes, either with Aβ monomer or its dimer, were not observed in the ESI-IM-MS spectra as compared to the MALDI-ToF-MS ones, our results strongly suggest that Zn-Porph effectively prevents the Aβ early assembly leading to soluble oligomers and insoluble fibrils. Upon the addition of the Zn-Porph to monomeric Aβ40, the features corresponding to its monomeric forms and to the dimeric compact conformation were essentially eliminated and that one of the extended conformation was significantly diminished. This was also an indication that Zn-Porph more likely forms a complex with the dimeric compact conformer being involved in an on-pathway fibrillation process, whereas the extended one could be involved also to the off-pathway leading to amorphous aggregates. Interestingly, the IM-MS experiments revealed the detection of new signals in the samples containing Zn-Porph. The correspondence of the MS/MS patterns predicted using MS/MS database search programs to those ones of the new detected species suggested a porphyrin-catalyzed oxidation at Met-35 of Aβ40. This led to the formation of Aβ40 Met-35(O) monomer and mono-oxidized dimer consisting of one unit of Aβ40 Met-35(O) and another of unmodified Aβ40. On the basis of the above mentioned findings, we concluded that binding to and stabilizing Aβ40 monomer, with concomitant catalyzed oxidation, could be the predominant mechanism of the inhibition of the self-assembly of Aβ by this candidate theranostic agent. The multifunctional fluorescent molecule investigated in this doctoral project shows promising potential as a theranostic agent for the diagnosis and therapy of AD. This remains the biggest challenge in personalized medicine for AD. The optimized statistical approach is innovative to the field of ion mobilitybased analysis of Aβ peptide, and could prove useful also in studies focusing on the in vitro inhibition on Aβ42 assembly and on other aggregation diseases such as Parkinson's (PD) or Amyotrophic lateral sclerosis (ALS).File | Dimensione | Formato | |
---|---|---|---|
Tesi di dottorato - LAZZARO SERENA 20191111143126.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
18.59 MB
Formato
Adobe PDF
|
18.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.