Quantum Chromodynamics (QCD) is the non-abelian gauge field theory that within the Standard Model describes the strong interaction between quarks and gluons. QCD exhibits two main properties:confinement and asymptotic freedom. The former implies that in ordinary matter quarks and gluons are bounded within colorless hadrons. The latter is related to the decrease of the QCD strength coupling with increasing characteristic energy of the process. Asymptotic freedom implies that under extreme conditions of high temperature and density the interaction affecting quarks and gluons is so weakly that they are released from the bounding state to form a deconfined phase of matter known as the Quark-Gluon Plasma (QGP). Numerical solutions of QCD equations on lattice (lQCD) predict that such transition is properly a crossover at almost zero baryon density and with a critical temperature Tc=155 MeV. The study of nuclear matter under extreme conditions is the main program of the experiments at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) where ultrarelativistic Heavy-Ion Collisions (HICs) are conducted to create an almost baryon free QGP with initial T = 3Tc. In this scenario Heavy Quarks (HQs), mainly charm and bottom, play a unique role. Due to their large masses HQs are created at the initial stage of HICs by hard perturbative QCD scattering processes. Moreover, their thermalization time is comparable with the QGP lifetime. Hence HQs can probe the entire evolution of the fireball carrying more information about their initial properties. The most important observables in the HQ sector are the nuclear modification factor RAA and the elliptic flow v2. The challenge of each theoretical framework is to provide a simultaneous description of these two observables that have been measured both at RHIC and LHC energies. In this thesis we study the HQ dynamics within the QGP by means of a relativistic Boltzmann transport approach. In this framework we treat non-perturbative QCD effects by prescription of a Quasi-Particle Model (QPM) in which light quarks and gluons of the bulk are dressed with effective masses and the T dependence of the strength coupling is fitted to lQCD thermodynamics. In the first part of this thesis we discuss HQ transport coefficients by performing simulations in static QCD medium. We compare our extracted drag and diffusion coefficients with results obtained through a Montecarlo integration. Afterwards, we investigate charm suppression and compare the results among various theoretical models. In the second part, we focus on the dynamical evolution of HQs within the QGP by carrying out simulations of realistic HICs. We observe that within our QPM interaction, which implies a T-dependent drag coefficient almost constant near Tc, we are able to describe simultaneously the RAA and v2 of D mesons both at RHIC and LHC energies. In order to compare with the experimental measurements we couple the final HQ spectra to a hybrid coalescence plus fragmentation hadronization model which is suitable to describe the large magnitude of the observed charmed baryon-to-meson ratio. In the same framework, we provide our predictions for B meson RAA and v2 and compare our results with the available experimental data. A goal of this work is to include the effect of enhanced baryon production in HICs on the nuclear modification factor. Finally, we present our estimate of the HQ spatial diffusion coefficient Ds(T) within our Boltzmann approach. We show that our phenomenological predictions of Ds for charm quark are in agreement with lQCD expectations, meaning that through the study of HQ thermalization we can probe the QCD interaction within the present uncertainties of lQCD. We point out also that the possibility to calculate transport coefficients at the bottom mass scale allows to reduce uncertainties coming from the adopted transport model and to bring the estimate of Ds closer to the quenched lQCD.
La Cromodinamica Quantistica (QCD) è la teoria di gauge non-abeliana che nell'ambito del Modello Standard descrive l'interazione forte fra quark e gluoni. La QCD possiede due proprietà principali: il confinamento e la libertà asintotica. A causa del confinamento quark e gluoni nella materia ordinaria non possono esistere isolati, ma formano stati legati privi di colore noti come adroni. La libertà asintotica si riferisce al fatto che la costante di accoppiamento della QCD diminuisce all'aumentare dell'energia del processo fisico. Essa implica anche che in condizioni estreme di alta temperatura o densità quark e gluoni interagiscono così debolmente da essere rilasciati dagli adroni e formare un nuovo stato di materia chiamato Quark-Gluon Plasma (QGP). Calcoli numerici basati sulla soluzione della QCD su reticolo (lQCD) hanno mostrato che questa transizione di fase è in realtà un crossover che si verifica ad una temperatura critica Tc=155 MeV. Lo studio della materia nucleare in condizioni estreme è oggetto principale degli esperimenti al Relativistic Heavy-Ion Collider (RHIC) e al Large Hadron Collider (LHC) dove si effettuano collisioni di ioni pesanti (HICs) ad energie ultrarelativisitche per creare il QGP a potenziale barionico nullo e con una temperatura iniziale di circa T = 3Tc. In questo scenario i quark pesanti (HQs), charm e bottom, hanno un ruolo unico. Infatti, a causa della loro massa elevata, essi vengono creati da processi hard negli stati iniziali di HICs e inoltre il loro tempo di termalizzazione è confrontabile con la vita media del QGP. Perciò i HQs si propagano lungo l intera fase evolutiva della fireball preservando molte informazioni sulle loro proprietà dinamiche. Le più importanti osservabili sono il fattore di modificazione nucleare RAA e il flusso ellittico v2. I modelli teorici mirano a fornire una descrizione simultanea delle due osservabili misurate sia a RHIC che a LHC. In questa tesi descriviamo la dinamica dei HQs all'interno del QGP per mezzo di un approccio del trasporto relativistico di Boltzmann. Includiamo gli effetti non-perturbativi della QCD attraverso un modello a Quasi-Particelle (QPM) in cui quark leggeri e gluoni sono rivestiti con una massa termica e la dipendenza da T della costante di accoppiamento è fittata sulla termodinamica di lQCD. Nella prima parte ci concentriamo sullo studio dei coefficienti del trasporto dei HQs effettuando simulazioni in un mezzo statico. Quindi confrontiamo i risultati estratti per i coefficienti di drag e diffusion con dei calcoli ottenuti attraverso un integrazione Montecarlo e studiamo la soppressione dei quark charm confrontando vari modelli teorici. Nella seconda parte discutiamo l evoluzione dinamica dei HQs nel QGP in simulazioni HICs realistiche. Osserviamo che con l'interazione QPM, che determina un coefficiente di drag costante vicino a Tc, descriviamo simultaneamente RAA e v2 dei mesoni D alle energie di RHIC e di LHC. Per confrontarci con le misure sperimentali accoppiamo gli spettri finali dei HQs con un meccanismo di adronizzazione basato su un modello ibrido di frammentazione e coalescenza con cui spieghiamo anche il rapporto elevato barioni-mesoni in HICs. Con lo stesso approccio del trasporto riportiamo le nostre predizioni per RAA e v2 dei mesoni B. Una novità di questo lavoro è rappresentata dall impatto della produzione elevata di barioni Lambdac in HICs sul fattore di modificazione nucleare dei mesoni D. Infine presentiamo le nostre stime sul coefficiente di diffusione spaziale Ds(T) dei quark charm mostrando che esse sono in accordo con i valori calcolati in lQCD. Ciò dimostra che entro le incertezze di lQCD è possibile esplorare le proprietà dell interazione di QCD attraverso la termalizzazione dei HQs. Mostriamo inoltre che lo studio del Ds alla scala di massa del quark bottom riduce le incertezze che derivano dai modelli del trasporto utilizzati e garantisce un maggiore accordo con l approssimazione statica di lQCD.
Probing the Quark-Gluon Plasma properties through Heavy Quarks' dynamics: transport coefficients and elliptic flow / Coci, Gabriele. - (2019 May 30).
Probing the Quark-Gluon Plasma properties through Heavy Quarks' dynamics: transport coefficients and elliptic flow
COCI, GABRIELE
2019-05-30
Abstract
Quantum Chromodynamics (QCD) is the non-abelian gauge field theory that within the Standard Model describes the strong interaction between quarks and gluons. QCD exhibits two main properties:confinement and asymptotic freedom. The former implies that in ordinary matter quarks and gluons are bounded within colorless hadrons. The latter is related to the decrease of the QCD strength coupling with increasing characteristic energy of the process. Asymptotic freedom implies that under extreme conditions of high temperature and density the interaction affecting quarks and gluons is so weakly that they are released from the bounding state to form a deconfined phase of matter known as the Quark-Gluon Plasma (QGP). Numerical solutions of QCD equations on lattice (lQCD) predict that such transition is properly a crossover at almost zero baryon density and with a critical temperature Tc=155 MeV. The study of nuclear matter under extreme conditions is the main program of the experiments at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) where ultrarelativistic Heavy-Ion Collisions (HICs) are conducted to create an almost baryon free QGP with initial T = 3Tc. In this scenario Heavy Quarks (HQs), mainly charm and bottom, play a unique role. Due to their large masses HQs are created at the initial stage of HICs by hard perturbative QCD scattering processes. Moreover, their thermalization time is comparable with the QGP lifetime. Hence HQs can probe the entire evolution of the fireball carrying more information about their initial properties. The most important observables in the HQ sector are the nuclear modification factor RAA and the elliptic flow v2. The challenge of each theoretical framework is to provide a simultaneous description of these two observables that have been measured both at RHIC and LHC energies. In this thesis we study the HQ dynamics within the QGP by means of a relativistic Boltzmann transport approach. In this framework we treat non-perturbative QCD effects by prescription of a Quasi-Particle Model (QPM) in which light quarks and gluons of the bulk are dressed with effective masses and the T dependence of the strength coupling is fitted to lQCD thermodynamics. In the first part of this thesis we discuss HQ transport coefficients by performing simulations in static QCD medium. We compare our extracted drag and diffusion coefficients with results obtained through a Montecarlo integration. Afterwards, we investigate charm suppression and compare the results among various theoretical models. In the second part, we focus on the dynamical evolution of HQs within the QGP by carrying out simulations of realistic HICs. We observe that within our QPM interaction, which implies a T-dependent drag coefficient almost constant near Tc, we are able to describe simultaneously the RAA and v2 of D mesons both at RHIC and LHC energies. In order to compare with the experimental measurements we couple the final HQ spectra to a hybrid coalescence plus fragmentation hadronization model which is suitable to describe the large magnitude of the observed charmed baryon-to-meson ratio. In the same framework, we provide our predictions for B meson RAA and v2 and compare our results with the available experimental data. A goal of this work is to include the effect of enhanced baryon production in HICs on the nuclear modification factor. Finally, we present our estimate of the HQ spatial diffusion coefficient Ds(T) within our Boltzmann approach. We show that our phenomenological predictions of Ds for charm quark are in agreement with lQCD expectations, meaning that through the study of HQ thermalization we can probe the QCD interaction within the present uncertainties of lQCD. We point out also that the possibility to calculate transport coefficients at the bottom mass scale allows to reduce uncertainties coming from the adopted transport model and to bring the estimate of Ds closer to the quenched lQCD.File | Dimensione | Formato | |
---|---|---|---|
PhD_tesi_Coci.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
6.44 MB
Formato
Adobe PDF
|
6.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.