In this thesis work, solution dispensing techniques have been employed for the realization of complex biological arrays. Inkjet printing techniques were employed for the generation of drug screening platforms. This approach was initially proved with a model enzyme system like Glucose Oxidase substrate covalently linked to a functionalized silicon oxide support. On this support an enzymatic substrate (D-glucose)/inhibitor (D-glucal) couple was accurately dispensed. A simple optical detection method was used to prove the screening capability of the microarray with the possibility to assay with high reproducibility at the single spot level. Afterwards, this methodology has been extended to CYP450 enzymes like CYP3A4, one of the main targets for the phase I drug metabolism via a droplet microreactors arrays containing CYP3A4 enzyme mixed with model inhibitors (erythromycin) and enzymatic chemiluminescent substrates (Luciferin-Isopropylacetate). The enzymatic activity was detected by using easy and low cost optical measurements of spot brightness. As a second main objective, high-throughput and multiplexed Dip Pen Nanopatterning methodologies in liquid format were combined with Proteic Ligand DNA-Directed Immobilization for the creation of complex protein biochips on modified glass surfaces displaying spots of cell-specific ligands with lateral dimensions minor than one single cell. In a first application the epidermal growth factor (EFG) protein arrays were realized to display specific single cell adhesion activity. As a second application, immobilized proteic ligands were used to recruit designed cellular receptors which presented intracellular protein domain whose interaction with a cytosolic binding partner was monitored and perturbated.

Micro and Nano patterns for Biosensing: from enzymatic assays to single cells interaction arrays / Arrabito, GIUSEPPE DOMENICO. - (2011 Dec 10).

Micro and Nano patterns for Biosensing: from enzymatic assays to single cells interaction arrays

ARRABITO, GIUSEPPE DOMENICO
2011-12-10

Abstract

In this thesis work, solution dispensing techniques have been employed for the realization of complex biological arrays. Inkjet printing techniques were employed for the generation of drug screening platforms. This approach was initially proved with a model enzyme system like Glucose Oxidase substrate covalently linked to a functionalized silicon oxide support. On this support an enzymatic substrate (D-glucose)/inhibitor (D-glucal) couple was accurately dispensed. A simple optical detection method was used to prove the screening capability of the microarray with the possibility to assay with high reproducibility at the single spot level. Afterwards, this methodology has been extended to CYP450 enzymes like CYP3A4, one of the main targets for the phase I drug metabolism via a droplet microreactors arrays containing CYP3A4 enzyme mixed with model inhibitors (erythromycin) and enzymatic chemiluminescent substrates (Luciferin-Isopropylacetate). The enzymatic activity was detected by using easy and low cost optical measurements of spot brightness. As a second main objective, high-throughput and multiplexed Dip Pen Nanopatterning methodologies in liquid format were combined with Proteic Ligand DNA-Directed Immobilization for the creation of complex protein biochips on modified glass surfaces displaying spots of cell-specific ligands with lateral dimensions minor than one single cell. In a first application the epidermal growth factor (EFG) protein arrays were realized to display specific single cell adhesion activity. As a second application, immobilized proteic ligands were used to recruit designed cellular receptors which presented intracellular protein domain whose interaction with a cytosolic binding partner was monitored and perturbated.
10-dic-2011
Dans ce travail de thèse, des techniques de distribution de solution ont été utilisées pour la réalisation des Arrays biologiques. Des techniques d'impression de jet d'encre ont été utilisées pour la génération des plates-formes pour drug screening. Cette approche a été au commencement prouvée avec un système d'enzymes modèles comme le substrat de la Glucose oxydase en covalence lié à un appui functionalized d'oxyde de silicium. Sur cet appui un couple enzymatique de substrat (D-glucose) /inhibitor (D-glucal) a été exactement distribué. Une très simple méthode de dépistage optique a été employée pour prouver la capacité de criblage du microarray avec la possibilité à l'analyse avec la reproductibilité élevée au niveau d'une seule spot. Après, cette méthodologie a été étendue aux enzymes CYP450 comme CYP3A4, une des cibles principales pour le métabolisme de drogue de la phase I par l'intermédiaire des microréacteurs d'une gouttelette range contenir l'enzyme CYP3A4 mélangée aux inhibiteurs modèles (érythromycine) et aux substrats chimioluminescents enzymatiques (Luciferin-Isopropylacetate). L'activité enzymatique a été détectée à l'aide des mesures optiques et de coût bas d'éclat de spot. Comme deuxième objectif principal, la haut-sortie et les méthodologies multiplexées de Dip Pen Nanopatterning dans le format liquide ont été combinées avec le Ligand Proteic DNA-directed immobilization pour la création des biochip de protéine sur les surfaces en verre modifiées montrant des spot des ligands qui sont cellule-spécifiques avec dimensions latérales mineures que d'une seule cellule. Dans une première application les rangées épidermiques de protéine du facteur de croissance (EFG) ont été réalisées pour montrer l'activité unicellulaire spécifique d'adhérence. Comme deuxième application, des ligands proteic immobilisés ont été employés pour recruter les récepteurs cellulaires conçus qui ont présenté le domaine intracellulaire de protéine dont l'interaction avec un associé obligatoire cytosolique a été surveillée et perturbè.
Inkjet printing, Dip-Pen Nanolithography, Drug Screening, Biosensors, Metabolic Enzymes, DNA Microstructures, Cellular Arrays.
Micro and Nano patterns for Biosensing: from enzymatic assays to single cells interaction arrays / Arrabito, GIUSEPPE DOMENICO. - (2011 Dec 10).
File in questo prodotto:
File Dimensione Formato  
PhD_thesis_GiuseppeArrabito.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 5.21 MB
Formato Adobe PDF
5.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/585412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact