The PhD work described in this thesis is related of the Ambition Power project, aimed in turn in the field Energy and Energy Saving . In particular, this PhD topic was essentially focused on the research of new nanocomposite materials for electronic packaging. The purpose of this particular branch of the microelectronic industry is to find materials able to dissipate heat without any power loss, any parasitic current and able to support the high working temperatures required for high power energy applications. This objective in addition to the trend to miniaturization and the request of ecofriendly compounds (such for example lead-free solder), device reliability and high performances, constitute a challenge. Thanks to the scalability of their properties and to the simplicity of the methods with which they are obtained, polymeric nanocomposite are emerging as a class of potential materials. They are composite materials constituted of a polymeric matrix filled with different charges (made in turn of nanomaterials). Therefore, during this PhD several polymeric nanocomposites were synthetized and characterized in order to study their thermal behavior. In this particular case, the epoxy resin is synthetized from a diglycidil ether of bisphenol A (DGEBA) cured in presence of diethylene tetrammine (DETA). In order to obtain the different nanocomposites, a 33% amount of fillers (Kevlar, silica, polyimide, graphene-oxide and molybdenum disulfide ) were added to the curing mixture. Nanocomposites were at first characterized by means of thermal gravimetric and differential thermal analysis (DTA) in order to verify if they were suitable for applications requiring high temperatures values. Once we see that they start to degrade at temperature higher than those requiring in packaging, we characterized by thermal infrared thermography. We performed both static mode thermal map acquirements and dynamic ones by using the same measurement apparatus (even if a simple less powerful infrared camera could obtain the static mode ones also) since our final aim is the simulation of a real device working. The best results were obtained in the case of MoS2 nanocomposites, namely 15 W/ (m*K). The reasons of these data are related to the nature of the fillers and they will be discussed in this thesis. The perspectives of my PhD research consist of improving and making reproducible the static mode measurement method and realizing nanocomposite with different amount of fillers in order to study the influence of their concentration, according to the discussed Maxwell equation.
Il lavoro di dottorato descritto in questo lavoro di tesi è connesso al Progetto Ambition Power, nell ambito del settore Energia e Risparmio Energetico . In particolare, la tematica principale del presente lavoro di tesi è la ricerca di nuovi materiali nanocompositi per il packaging elettronico. Lo scopo di questa particolare branca dell industria microelettronica è trovare nuovi materiali in grado di dissipare il calore senza provocare perdite d energia, correnti parassite e inoltre in grado di sopportare le alte temperature che si generano quando i dispositivi sono in funzionamento. Questo obiettivo, insieme alle richieste di miniaturizzazione, di bassi costi e alte prestazioni, costituisce una vera sfida. Grazie alla versatilità delle loro proprietà e alla varietà dei metodi con cui si possono ottenere, i nanomateriali stanno emergendo come nuova classe di materiali adatti a questo tipo di applicazioni. Pertanto, durante il dottorato sono stati sintetizzati e caratterizzati diversi nanocompositi. Questi sono stati sintetizzati partendo da una matrice costituita da un etere del bis-fenolo A (DGEBA) polimerizzato in presenza di una tetra ammina (DETA) e una quantità di nanoparticelle pari al 33% di diversa nature. I compositi sono stati caratterizzati dal punto di vista funzionale (l analisi FT-IR ha evidenziato la presenza dei picchi caratteristici sia della matrice che dei filler) e strutturale e, dato che le temperature di degradazione sono superiori a quelle che si raggiungono nelle applicazioni di packaging (come evidenziato dalle analisi termo-gravimetriche e DTA), sono state effettuate delle analisi termiche più approfondite attraverso la Termografia Infrarossa, allo scopo di misurarne la conducibilità termica. I risultati migliori sono stati ottenuti con i compositi contenenti MoS2 e le motivazioni dei diversi comportamenti sono descritte nel presente lavoro di tesi. Le prospettive di quest ultimo riguardano l approfondimento della metodica messa a punto, in modo che le misure siano riproducibili. Inoltre, si vogliono effettuare delle misure con campioni contenenti diverse percentuali di filler, cosi da stimare la dipendenza della conducibilità termica oltre che dalla nature anche dalla quantità di carica delle resine (in accordo con la qui discussa equazione di Maxwell).
New composite nanomaterials for improving thermal properties of power electronic packaging / Isgro', Giuseppe. - (2014 Dec 10).
New composite nanomaterials for improving thermal properties of power electronic packaging
ISGRO', GIUSEPPE
2014-12-10
Abstract
The PhD work described in this thesis is related of the Ambition Power project, aimed in turn in the field Energy and Energy Saving . In particular, this PhD topic was essentially focused on the research of new nanocomposite materials for electronic packaging. The purpose of this particular branch of the microelectronic industry is to find materials able to dissipate heat without any power loss, any parasitic current and able to support the high working temperatures required for high power energy applications. This objective in addition to the trend to miniaturization and the request of ecofriendly compounds (such for example lead-free solder), device reliability and high performances, constitute a challenge. Thanks to the scalability of their properties and to the simplicity of the methods with which they are obtained, polymeric nanocomposite are emerging as a class of potential materials. They are composite materials constituted of a polymeric matrix filled with different charges (made in turn of nanomaterials). Therefore, during this PhD several polymeric nanocomposites were synthetized and characterized in order to study their thermal behavior. In this particular case, the epoxy resin is synthetized from a diglycidil ether of bisphenol A (DGEBA) cured in presence of diethylene tetrammine (DETA). In order to obtain the different nanocomposites, a 33% amount of fillers (Kevlar, silica, polyimide, graphene-oxide and molybdenum disulfide ) were added to the curing mixture. Nanocomposites were at first characterized by means of thermal gravimetric and differential thermal analysis (DTA) in order to verify if they were suitable for applications requiring high temperatures values. Once we see that they start to degrade at temperature higher than those requiring in packaging, we characterized by thermal infrared thermography. We performed both static mode thermal map acquirements and dynamic ones by using the same measurement apparatus (even if a simple less powerful infrared camera could obtain the static mode ones also) since our final aim is the simulation of a real device working. The best results were obtained in the case of MoS2 nanocomposites, namely 15 W/ (m*K). The reasons of these data are related to the nature of the fillers and they will be discussed in this thesis. The perspectives of my PhD research consist of improving and making reproducible the static mode measurement method and realizing nanocomposite with different amount of fillers in order to study the influence of their concentration, according to the discussed Maxwell equation.File | Dimensione | Formato | |
---|---|---|---|
Giuseppe Isgrò_Tesi PhD.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
6.98 MB
Formato
Adobe PDF
|
6.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.