The increasing availability on the market of different types of solar reflectors such as: polymeric film mirrors, aluminum mirrors and thin glass mirrors, together with: the lack of available norms in this area, and a valid methodology to compare the performances of the candidate reflectors; highlights the necessity to conduct a more detailed analysis on these new technologies. The objective of the present work is to suggest a valuable method to compare the reflectance performance of mirrors, evaluating also their performances in order to assess: - the most durable to ageing and weathering effects; - the different reflectance behavior with the variation of the solar incident angle. .For these reasons the work here proposed was carried out with an experimental apparatus composed by: - An Agilent Cary 5000 UV/Vis/NIR spectrophotometer to test the different performance of the mirrors at different characterization steps; - An integrating sphere of 150 mm in diameter (DRA ¡V Diffuse Reflectance Accessory); - A VASRA (Variable Angle Specular Reflection Accessory); - A UV chamber to accelerate the ageing process; - A £gScan SMS Scatterometer for RMS Roughness and BDSF measurement; - An outdoor bench The work was completed with two modeling tools: - An engineering equation solver (Mathcad) to dynamically evaluate the behavior; - A ray tracing software (Soltrace) to evaluate the system¡¦s optical efficiency. The analysis indicates that the candidate reflectors can be accurately characterized with five fundamental parameters: a) £lSWH, the solar-weighted hemispherical reflectance; b) £lSWS, the solar-weighted specular reflectance; c) £lSWS( á), the solar weighted specular reflectance function of the variable angle of incidence; d) BDSF, Bi Directional Scattering Function; e) RMS Roughness This evaluation will provide a valuable tool, for the companies who want to invest in concentrating solar power technology, to decide whether or not using a candidate reflectors to realize new plants, assessing their performances, their costs, and their durability.
SOLAR MIRRORS CHARACTERIZATION FOR CONCENTRATING SOLAR POWER TECHNOLOGY / Contino, Alessandro. - (2011 Dec 08).
SOLAR MIRRORS CHARACTERIZATION FOR CONCENTRATING SOLAR POWER TECHNOLOGY
CONTINO, ALESSANDRO
2011-12-08
Abstract
The increasing availability on the market of different types of solar reflectors such as: polymeric film mirrors, aluminum mirrors and thin glass mirrors, together with: the lack of available norms in this area, and a valid methodology to compare the performances of the candidate reflectors; highlights the necessity to conduct a more detailed analysis on these new technologies. The objective of the present work is to suggest a valuable method to compare the reflectance performance of mirrors, evaluating also their performances in order to assess: - the most durable to ageing and weathering effects; - the different reflectance behavior with the variation of the solar incident angle. .For these reasons the work here proposed was carried out with an experimental apparatus composed by: - An Agilent Cary 5000 UV/Vis/NIR spectrophotometer to test the different performance of the mirrors at different characterization steps; - An integrating sphere of 150 mm in diameter (DRA ¡V Diffuse Reflectance Accessory); - A VASRA (Variable Angle Specular Reflection Accessory); - A UV chamber to accelerate the ageing process; - A £gScan SMS Scatterometer for RMS Roughness and BDSF measurement; - An outdoor bench The work was completed with two modeling tools: - An engineering equation solver (Mathcad) to dynamically evaluate the behavior; - A ray tracing software (Soltrace) to evaluate the system¡¦s optical efficiency. The analysis indicates that the candidate reflectors can be accurately characterized with five fundamental parameters: a) £lSWH, the solar-weighted hemispherical reflectance; b) £lSWS, the solar-weighted specular reflectance; c) £lSWS( á), the solar weighted specular reflectance function of the variable angle of incidence; d) BDSF, Bi Directional Scattering Function; e) RMS Roughness This evaluation will provide a valuable tool, for the companies who want to invest in concentrating solar power technology, to decide whether or not using a candidate reflectors to realize new plants, assessing their performances, their costs, and their durability.File | Dimensione | Formato | |
---|---|---|---|
SOLAR MIRRORS CHARACTERIZATION FOR CONCENTRATING SOLAR POWER TECHNOLOGY.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
15.44 MB
Formato
Adobe PDF
|
15.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.