Drug delivery systems (DDSs) are widely used to overcome the intrinsic limitations (low solubility, poor permeability, and short biological half-life) of several drugs which can affect their efficacy and/or induce toxicity. Polymer-based systems gained particular attention for the efficient delivery of bioactive compounds. The unique features of the polymers (flexibility, variety of composition and properties, easy functionalization to respond to specific stimuli) along with the presence of multiple functional groups in their chains ensure the efficient binding of the therapeutic agents to achieve the target-oriented delivery of payloads. Smart polymers can change their structural and conformational features as well as their properties in response to external and/or physiological signals. These “on-demand” processes account for the tailored site- and time-controlled release of therapeutics avoiding/reducing their leaking into the healthy physiological environment. pH-responsive carriers are among the most explored compounds and their development is extensively pursued for the construction of stimuli-responsive drug delivery platforms. These systems exploit the localized pH changes occurring between healthy and pathological tissues (due to cancer, infection, and inflammation processes) or intracellular compartments. Despite the plenty of efforts made towards the design of effective pH-responsive delivery systems, a quantitative analysis of the strength and nature of the interactions occurring between the drug and the carrier, which are of paramount significance for the success of the releasing systems, was rarely reported. In this PhD thesis, the study of multiple equilibria in solution is proposed as a valuable strategy for the design and development of delivery platforms obtained by the non-covalent assembling of poly(acrylic acid) (PAA), a biocompatible and pH-responsive polymer, metal ions of biological interest (Cu(II), Zn(II) or Co(II)) and quercetin (Que) or methotrexate (MTX), selected as model active principles, with the aim of optimizing the stability and the drug loading and release capability of the resulting assemblies. It is well known that the application of quercetin, a flavonoid with a broad spectrum of physiological activities, is severely confined due to its low water solubility, short half-life and in vivo bioavailability. The efficacy of methotrexate, a chemotherapy agent, is strongly affected by its poor solubility, short half-life in the bloodstream and drug resistance by targeted cells. Moreover, this drug shows a lack of selectivity toward neoplastic cells causing severe side effects. Metal-coordinated assemblies containing quercetin are described in Chapter II. The flavonoid ability to complex metal ions and the PAA polymer as well as the formation of the metal-coordinated assemblies were investigated in aqueous solution at pH 7.4 and 25 °C by both UV-Vis spectroscopy and isothermal titration calorimetry (ITC). Speciation models showed that Que can form an ML species with all metal ions and an additional ML2 species with Cu(II) and Co(II). ITC measurements allowed for the determination of the thermodynamic parameters that drive the formation of the metal-complex species formed by the flavonoid. Interestingly, although Que and PAA are unable to interact, the presence of the metal ions allowed for their binding and thus its peculiar features resulted to be crucial for the formation of the assemblies. The carboxyl groups of PAA are able to complex the metal(II) ions forming the M(PAA) and M(PAA)2 species through an entropically favoured and driven process. ITC and UV-Vis measurements mutually confirmed the species and their stability for the Que-M(II)-PAA systems in solution. Que2CuPAA formation occurs through an entropically favoured and driven process; the formation of QueZn(PAA)2 is enthalpically favoured and driven whilst for QueCo(PAA)2 the enthalpic and entropic contributions are almost comparable. The formation of the cobalt(II)-coordinated assembly was also investigated at the solid-liquid interface through the quartz-crystal microbalance with dissipation monitoring (QCM-D) technique. The measurements confirmed the ability of the flavonoid to be adsorbed onto the metal-polymer complex and released under pH control. The kinetic stability of the copper(II)- and zinc(II)-based assemblies were investigated by UV-Vis to evaluate if the formation of the assemblies would increase the stability of quercetin, which undergoes degradation in aqueous solution when alone. The developed systems exhibited a longer half-life than that of the free flavonoid emphasizing that the formation of the three-component architecture improves the quercetin kinetic stability. The ability of the metal-coordinated carriers to release quercetin in a localized acidic environment was investigated under different pH conditions using dialysis and UV Vis spectroscopy for the copper(II)- and zinc(II)-based systems and by QCM-D experiments for the cobalt(II)-based one. These studies proved that the developed delivery systems permit the release of the loaded drug under pH control. In Chapter III, metal-coordinated assemblies containing methotrexate are designed and prepared. The quantitative analysis of the species, binding affinity and thermodynamic signature of all the formation equilibria involving the chemotherapy agent, metal ions and poly(acrylic acid) was carried out in aqueous solution at 25 °C and physiological pH by ITC. Methotrexate forms ML complex species with both Cu(II) and Zn(II) ions and an MTXM(PAA)2 complex species when in the presence of poly(acrylic acid). Entropically favoured and driven processes mainly due to desolvation and conformational changes of the metal(II)-polymer complex are responsible for the formation of the metal-coordinated assemblies. The binding ability of MTX toward the polymer-metal complexes was also examined at the solid-liquid interface by QCM-D. MTX was found to be adsorbed onto the polymer-metal layer confirming their ability to interact as well as to release the drug under different pH values. Dynamic light scattering (DLS), ζ-potential and scanning electron microscopy (SEM) measurements provided a thorough characterization of the size, charge, and morphology of the MTX-based assemblies. The in vitro cytotoxicity of the assemblies was assessed in the U87 glioblastoma cell line through the Alamar Blue assay; the results highlighted the most efficient anticancer activity of the three-component complexes compared to the free chemotherapy drug. A flow cytometry analysis of samples treated with the metal-based assemblies allowed us to assess the role of reactive oxygen species generation in the mechanism of cell death. Finally, the internalization of the assemblies in glioblastoma cancer cells was observed by confocal microscopy. The affinities of the polymeric systems toward human serum albumin (HSA) were investigated both in solution and at the interface. The strength of these interactions resides in the electrostatic forces occurring between the two interacting systems as suggested by the energetics of the binding process. A poly-lysine-based system containing MTX was also developed and the affinity of the drug towards this positively charged polymer was investigated in aqueous solution at 25 °C and pH 7.4 by UV-Vis, ITC and QCM-D experiments. Methotrexate interacts with the pH-responsive poly-lysine forming a stable complex thanks to an enthalpically favoured and driven process. The pH-sensitive release of the drug was investigated in solution and at the interface; both studies indicate that the polymeric system is not able to undergo a controlled release of the drug thus emphasizing the importance of metal ions in the assembly structure. In Chapter IV, copper(II)-coordinated assemblies with and without methotrexate were integrated with the layer-by-layer approach to develop multilayer polymeric systems to promote a pH-sensitive release of the chemotherapy drug. The fabricated polymeric nanoparticles were thoroughly characterized by ζ-potential, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements which revealed the surface charge, size and morphology of the different systems. Further studies will examine their ability to release the drug in a pH-controlled fashion. In Chapter V, the binding features of a new class of negatively charged water-soluble macrocyclic hosts (prismarene, PrS[5]carboxy and PrS[6]carboxy), which may be employed as a potential drug carrier, were investigated. Species, stability constants and forces driving the interaction of the host with guests having different sizes, shapes and charge in buffered aqueous solution at neutral pH were determined by ITC experiments. The guests were selected as model molecules for examining the recognition processes by containers potentially exploitable for the encapsulation/transport of charged species of biological relevance. Results highlighted the capabilities of the prismarene to encapsulate mono and dicationic molecules and provide crucial information about the role played by the guest size and charge in the encapsulation process. The stability of the host-guest complexes formed by PrS[5]carboxy with the ammonium cations is significantly affected by the structural features of the differently charged guests, while the affinity values determined for PrS[6]carboxy are quite comparable for all the cations investigated regardless of the properties of the guests. The inclusion of ammonium cations into PrS[5]carboxy is driven by enthalpically favourable attractive forces whilst, in the case of PrS[6]carboxy, the inclusion of monocations is an entropically favoured and driven process while enthalpy drives the complexation of the doubly charged guests. Overall, this doctoral thesis provides a detailed picture of the formation of metal-coordinated assemblies containing suitable drugs as well as of the solution thermodynamics and mechanisms involving multiple non-covalent, weak interactions. This information was revealed to be essential for the rational design and efficient application of the metal-based systems and macrocyclic receptors in solution. The strategy of examining multiple solution equilibria including different species resulted very helpful in designing a variety of efficient drug delivery platforms able to simultaneously enhance the loading and the site- and time-controlled release of proper drugs as well as to increase their efficacy.
I sistemi per il delivery di farmaci (DDSs) sono ampiamente utilizzati per superare i limiti caratteristici di numerosi agenti terapeutici (bassa solubilità, scarsa permeabilità e breve emivita biologica) che possono influenzarne l’efficacia e/o indurre tossicità. I sistemi di delivery polimerici hanno suscitato grande interesse poiché sono in grado di trasportare efficacemente composti bioattivi grazie alle loro peculiari caratteristiche (flessibilità, diversa composizione e proprietà, facile funzionalizzazione, capacità di rispondere a stimoli specifici) e alla presenza di più gruppi funzionali che garantiscono il loading efficiente di agenti terapeutici e il loro rilascio mirato. I polimeri “smart” possono infatti cambiare le loro proprietà strutturali e conformazionali in risposta a segnali esterni e/o fisiologici. Questi processi “on demand” permettono un rilascio controllato dei farmaci sito-specifico evitando/riducendo il loro rilascio nell'ambiente fisiologico sano. I carriers responsivi al pH sono tra i più studiati e utilizzati per la costruzione di piattaforme per la somministrazione di farmaci e sfruttano le differenze di pH che vi sono tra tessuti sani e patologici (dovute all’insorgenza di cancro, infezioni e infiammazioni o tipiche dei diversi compartimenti intracellulari). Nonostante i numerosi sforzi compiuti per la progettazione di sistemi di delivery sensibili alle variazioni di pH, l’analisi quantitativa della forza e della natura delle interazioni che si verificano tra il farmaco e il carrier, che sono fondamentali per garantire l’efficacia di tali sistemi di delivery, viene raramente considerata. Questa tesi di dottorato propone lo studio degli equilibri multipli in soluzione come una valida strategia per la progettazione e lo sviluppo di piattaforme di delivery ottenute dalle interazioni non covalenti che si instaurano tra acido poliacrilico (PAA), un polimero biocompatibile e sensibile al pH, ioni metallici di interesse biologico (Cu(II), Zn(II) o Co(II)) e quercetina (Que) o metotrexato (MTX), scelti come farmaci modello, al fine di ottimizzare la stabilità e la capacità di loading e rilascio del farmaco dei sistemi d’interesse. L’uso della quercetina, un flavonoide con un ampio spettro di attività fisiologiche, è limitato a causa della sua bassa solubilità in acqua, della breve emivita e della biodisponibilità in vivo. L'efficacia del metotrexato, un agente chemioterapico, è fortemente influenzata dalla sua scarsa solubilità, dalla breve emivita nel flusso sanguigno e dall’insorgenza di fenomeni di farmaco-resistenza. Inoltre, questo farmaco manca di selettività verso cellule neoplastiche e ciò determina l’insorgenza di gravi effetti collaterali. Nel Capitolo II sono descritti i composti di coordinazione (assemblies) contenenti quercetina. La capacità del flavonoide di formare specie complesse con gli ioni metallici e il polimero PAA e la formazione dei complessi è stata studiata in soluzione acquosa a pH 7.4 e 25 °C mediante spettroscopia UV-Vis e calorimetria isoterma di titolazione (ITC). Gli studi di speciazione hanno dimostrato che la Que può formare una specie complessa ML con tutti gli ioni metallici e una specie ML2 con Cu(II) e Co(II). Grazie alle titolazioni calorimetriche sono stati determinati i parametri termodinamici che guidano la formazione delle specie complesse metallo-quercetina. Sebbene Que e PAA non siano in grado di interagire tra loro, si è dimostrato che la presenza degli ioni metallici ne consente invece l’interazione ed è quindi cruciale per la formazione degli assemblies. I gruppi carbossilici del PAA sono in grado di complessare gli ioni metallici formando specie complesse M(PAA) e M(PAA)2 grazie a processi favoriti e guidati entropicamente. Titolazioni UV-Vis e ITC hanno infine permesso di determinare le specie e la loro stabilità per i sistemi Que-M(II)-PAA in soluzione. La formazione di Que2CuPAA avviene attraverso processi favoriti e guidati entropicamente; la formazione del sistema QueZn(PAA)2 è favorita e guidata entalpicamente mentre per QueCo(PAA)2 il guadagno entalpico ed entropico sono quasi comparabili. La formazione dell’assembly contenente cobalto(II) è stato inoltre studiato all'interfaccia solido-liquido mediante microbilancia a cristalli di quarzo con monitoraggio della dissipazione (QCM-D). Tali esperimenti hanno confermato la capacità del flavonoide di essere adsorbito sul layer metallo-polimero e di venir rilasciato in funzione del pH. La stabilità cinetica degli assemblies contenenti rame(II) e zinco(II) è stata studiata mediante spettroscopia UV-Vis. I composti di coordinazione contenenti Que hanno mostrato un'emivita più lunga di quella del flavonoide libero (che in soluzione acquosa va incontro a degradazione) evidenziando quindi che il sistema a tre componenti migliora la stabilità cinetica della quercetina. La capacità di rilascio di questi assemblies polimerici è stata studiata a diverse condizioni di pH combinando dialisi e spettroscopia UV-Vis per i sistemi contenenti rame(II) e zinco(II) mentre per il sistema contenente cobalto(II) sono stati eseguiti esperimenti QCM-D. Questi studi hanno dimostrato nel complesso che i sistemi sviluppati consento il rilascio della quercetina legata in funzione del pH. Nel Capitolo III sono stati progettati e preparati composti di coordinazione (assemblies) contenenti metotrexato. L’analisi quantitativa delle specie, delle affinità di legame e del profilo termodinamico di tutti gli equilibri che coinvolgono l'agente chemioterapico, gli ioni metallici e l'acido poliacrilico è stata effetuata in soluzione acquosa a 25 °C e pH fisiologico mediante ITC. Il metotrexato forma la specie complessa ML sia con il Cu(II) che con lo Zn(II) e una specie complessa MTXM(PAA)2 quando in presenza di acido poli(acrilico). Processi entropicamente favoriti e guidati, dovuti principalmente alla desolvatazione e alle modifiche conformazionali del sistema polimero-metallo(II) sono responsabili della formazione degli assemblies.. La capacità dell’MTX di legare il sistema metallo-polimero è stata studiata anche all’interfaccia solido-liquido mediante QCM-D. L’MTX è in grado di adsorbirsi sul layer metallo-polimero confermando quindi la sua capacità di interagire e rilasciare il farmaco a pH controllato. Misure di scattering dinamico della luce, potenziale zeta e microscopia elettronica a scansione hanno fornito un’approfondita caratterizzazione delle dimensioni, della carica e della morfologia degli assemblies contenenti MTX. La citotossicità in vitro di tali sistemi è stata studiata sulla linea cellulare di glioblastoma U87 mediante Alamar Blue; i risultati hanno evidenziato una più efficiente attività antitumorale dei sistemi a tre componenti rispetto al farmaco chemioterapico libero. Un'analisi citofluorimetrica delle cellule trattate con i sistemi polimerici contenti gli ioni metallici e il metotrexato ha dimostrato una maggiore produzione di specie reattive dell'ossigeno rispetto al farmaco libero e ai sistemi metallo-polimero che possono quindi essere coinvolti nel meccanismo di morte cellulare. Infine, l'internalizzazione degli assemblies polimerici nelle cellule di glioblastoma è stata osservata mediante microscopia confocale. Infine, l’interazione dei sistemi polimerici con la sieroalbumina umana (HSA) è stata studiata sia in soluzione che all'interfaccia mettendo in evidenza che il processo di binding è principalmente dovuto alle forze elettrostatiche attrattive che si instaurano tra i sistemi interagenti. È stato inoltre sviluppato un sistema poli-lisina-MTX e l'affinità del farmaco verso questo polimero carico positivamente è stato studiata in soluzione acquosa a 25 °C e pH 7,4 mediante esperimenti UV Vis, ITC e QCM-D. Il metotrexato interagisce con la polilisina, un polimero sensibile al pH, formando un complesso stabile grazie ad un processo favorito e guidato entalpicamente. Il rilascio del farmaco da questo sistema polimerico è stato studiato in funzione del pH sia in soluzione che all'interfaccia; entrambi gli studi hanno indicato che il sistema polimero-farmaco non permette un rilascio controllato del farmaco sottolineando così l'importanza degli ioni metallici nella struttura degli assemblies polimerici. Nel Capitolo IV, assemblies contenenti PAA, Cu(II) e MTX sono stati utilizzati per sviluppare sistemi polimerici multistrato utilizzando la tecnica del layer-by-layer con l'obiettivo di favorire il rilascio del farmaco chemioterapico mediante un controllo dal pH. Le nanoparticelle polimeriche sviluppate sono state caratterizzate tramite misure del potenziale ζ, microscopia elettronica a scansione (SEM) e della microscopia elettronica a trasmissione (TEM) che hanno permesso di determinare la carica superficiale, le dimensioni e la morfologia dei diversi sistemi. Ulteriori studi si focalizzeranno sulla capacità di rilasciare l’MTX in maniera controllata in funzione del pH. Nel Capitolo V sono state studiate le proprietà di riconoscimento molecolare di una nuova classe di recettori macrociclici solubili in acqua e carichi negativamente (prismareni, PrS[5]carbossilato e PrS[6]carbossilato), che possono essere impiegati come potenziali sistemi di delivery per farmaci. Specie, costanti di stabilità e forze guida dei processi di interazione con guests caratterizzati da dimensione, forma e cariche diverse sono state determinate in soluzione acquosa a pH neutro mediate esperimenti ITC. I guests sono stati selezionati come molecole modello per esaminare i processi di riconoscimento da parte di carriers che possono essere sfruttati per l'inclusione/trasporto di specie cariche aventi rilevanza biologica. I risultati hanno evidenziato le capacità dei prismareni di includere molecole mono e dicationiche fornendo informazioni cruciali sul ruolo svolto dalle dimensioni e dalla carica. La stabilità dei complessi host-guest formati dal PrS[5]carbossilato è significativamente influenzata dalle caratteristiche strutturali dei guests aventi carica diversa, mentre quella dei complessi formati dal PrS[6]carbossilato è di entità paragonabile per tutti i guest cationici indipendentemente dalle loro proprietà. L'inclusione dei guest monocationici nel PrS[5]carbossilato è guidata da forze attrattive entalpicamente favorevoli mentre, nel caso di PrS[6] carbossililato, l'inclusione dei guest monocationici è favorita e guidata entropicamente mentre l'entalpia guida la complessazione di guest dicationici. Complessivamente, questa tesi di dottorato fornisce un quadro dettagliato sui processi di formazione di composti di coordinazione contenenti farmaci selezionati nonché sulla loro caratterizzazione termodinamica in soluzione e sui meccanismi che coinvolgono interazioni deboli, non covalenti. Queste informazioni si sono rivelate essenziali per una progettazione razionale ed un’efficiente applicazione di tali metal-coordinated assemblies e dei recettori macrociclici in soluzione. Lo studio degli equilibri multipli in soluzione si è dimostrato fondamentale per la messa a punto di sistemi di drug delivery in grado di espletare un ottimale loading e rilascio controllato di opportuni farmaci, nonché un’elevata efficacia sui sistemi biologici target.
Composti di coordinazione in grado di rispondere ad opportuni stimoli da impiegare come piattaforme per il rilascio di farmaci / Santonoceta, GIUSEPPINA DOMENICA GIOVANNA. - (2023 Dec 19).
Composti di coordinazione in grado di rispondere ad opportuni stimoli da impiegare come piattaforme per il rilascio di farmaci
SANTONOCETA, GIUSEPPINA DOMENICA GIOVANNA
2023-12-19
Abstract
Drug delivery systems (DDSs) are widely used to overcome the intrinsic limitations (low solubility, poor permeability, and short biological half-life) of several drugs which can affect their efficacy and/or induce toxicity. Polymer-based systems gained particular attention for the efficient delivery of bioactive compounds. The unique features of the polymers (flexibility, variety of composition and properties, easy functionalization to respond to specific stimuli) along with the presence of multiple functional groups in their chains ensure the efficient binding of the therapeutic agents to achieve the target-oriented delivery of payloads. Smart polymers can change their structural and conformational features as well as their properties in response to external and/or physiological signals. These “on-demand” processes account for the tailored site- and time-controlled release of therapeutics avoiding/reducing their leaking into the healthy physiological environment. pH-responsive carriers are among the most explored compounds and their development is extensively pursued for the construction of stimuli-responsive drug delivery platforms. These systems exploit the localized pH changes occurring between healthy and pathological tissues (due to cancer, infection, and inflammation processes) or intracellular compartments. Despite the plenty of efforts made towards the design of effective pH-responsive delivery systems, a quantitative analysis of the strength and nature of the interactions occurring between the drug and the carrier, which are of paramount significance for the success of the releasing systems, was rarely reported. In this PhD thesis, the study of multiple equilibria in solution is proposed as a valuable strategy for the design and development of delivery platforms obtained by the non-covalent assembling of poly(acrylic acid) (PAA), a biocompatible and pH-responsive polymer, metal ions of biological interest (Cu(II), Zn(II) or Co(II)) and quercetin (Que) or methotrexate (MTX), selected as model active principles, with the aim of optimizing the stability and the drug loading and release capability of the resulting assemblies. It is well known that the application of quercetin, a flavonoid with a broad spectrum of physiological activities, is severely confined due to its low water solubility, short half-life and in vivo bioavailability. The efficacy of methotrexate, a chemotherapy agent, is strongly affected by its poor solubility, short half-life in the bloodstream and drug resistance by targeted cells. Moreover, this drug shows a lack of selectivity toward neoplastic cells causing severe side effects. Metal-coordinated assemblies containing quercetin are described in Chapter II. The flavonoid ability to complex metal ions and the PAA polymer as well as the formation of the metal-coordinated assemblies were investigated in aqueous solution at pH 7.4 and 25 °C by both UV-Vis spectroscopy and isothermal titration calorimetry (ITC). Speciation models showed that Que can form an ML species with all metal ions and an additional ML2 species with Cu(II) and Co(II). ITC measurements allowed for the determination of the thermodynamic parameters that drive the formation of the metal-complex species formed by the flavonoid. Interestingly, although Que and PAA are unable to interact, the presence of the metal ions allowed for their binding and thus its peculiar features resulted to be crucial for the formation of the assemblies. The carboxyl groups of PAA are able to complex the metal(II) ions forming the M(PAA) and M(PAA)2 species through an entropically favoured and driven process. ITC and UV-Vis measurements mutually confirmed the species and their stability for the Que-M(II)-PAA systems in solution. Que2CuPAA formation occurs through an entropically favoured and driven process; the formation of QueZn(PAA)2 is enthalpically favoured and driven whilst for QueCo(PAA)2 the enthalpic and entropic contributions are almost comparable. The formation of the cobalt(II)-coordinated assembly was also investigated at the solid-liquid interface through the quartz-crystal microbalance with dissipation monitoring (QCM-D) technique. The measurements confirmed the ability of the flavonoid to be adsorbed onto the metal-polymer complex and released under pH control. The kinetic stability of the copper(II)- and zinc(II)-based assemblies were investigated by UV-Vis to evaluate if the formation of the assemblies would increase the stability of quercetin, which undergoes degradation in aqueous solution when alone. The developed systems exhibited a longer half-life than that of the free flavonoid emphasizing that the formation of the three-component architecture improves the quercetin kinetic stability. The ability of the metal-coordinated carriers to release quercetin in a localized acidic environment was investigated under different pH conditions using dialysis and UV Vis spectroscopy for the copper(II)- and zinc(II)-based systems and by QCM-D experiments for the cobalt(II)-based one. These studies proved that the developed delivery systems permit the release of the loaded drug under pH control. In Chapter III, metal-coordinated assemblies containing methotrexate are designed and prepared. The quantitative analysis of the species, binding affinity and thermodynamic signature of all the formation equilibria involving the chemotherapy agent, metal ions and poly(acrylic acid) was carried out in aqueous solution at 25 °C and physiological pH by ITC. Methotrexate forms ML complex species with both Cu(II) and Zn(II) ions and an MTXM(PAA)2 complex species when in the presence of poly(acrylic acid). Entropically favoured and driven processes mainly due to desolvation and conformational changes of the metal(II)-polymer complex are responsible for the formation of the metal-coordinated assemblies. The binding ability of MTX toward the polymer-metal complexes was also examined at the solid-liquid interface by QCM-D. MTX was found to be adsorbed onto the polymer-metal layer confirming their ability to interact as well as to release the drug under different pH values. Dynamic light scattering (DLS), ζ-potential and scanning electron microscopy (SEM) measurements provided a thorough characterization of the size, charge, and morphology of the MTX-based assemblies. The in vitro cytotoxicity of the assemblies was assessed in the U87 glioblastoma cell line through the Alamar Blue assay; the results highlighted the most efficient anticancer activity of the three-component complexes compared to the free chemotherapy drug. A flow cytometry analysis of samples treated with the metal-based assemblies allowed us to assess the role of reactive oxygen species generation in the mechanism of cell death. Finally, the internalization of the assemblies in glioblastoma cancer cells was observed by confocal microscopy. The affinities of the polymeric systems toward human serum albumin (HSA) were investigated both in solution and at the interface. The strength of these interactions resides in the electrostatic forces occurring between the two interacting systems as suggested by the energetics of the binding process. A poly-lysine-based system containing MTX was also developed and the affinity of the drug towards this positively charged polymer was investigated in aqueous solution at 25 °C and pH 7.4 by UV-Vis, ITC and QCM-D experiments. Methotrexate interacts with the pH-responsive poly-lysine forming a stable complex thanks to an enthalpically favoured and driven process. The pH-sensitive release of the drug was investigated in solution and at the interface; both studies indicate that the polymeric system is not able to undergo a controlled release of the drug thus emphasizing the importance of metal ions in the assembly structure. In Chapter IV, copper(II)-coordinated assemblies with and without methotrexate were integrated with the layer-by-layer approach to develop multilayer polymeric systems to promote a pH-sensitive release of the chemotherapy drug. The fabricated polymeric nanoparticles were thoroughly characterized by ζ-potential, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements which revealed the surface charge, size and morphology of the different systems. Further studies will examine their ability to release the drug in a pH-controlled fashion. In Chapter V, the binding features of a new class of negatively charged water-soluble macrocyclic hosts (prismarene, PrS[5]carboxy and PrS[6]carboxy), which may be employed as a potential drug carrier, were investigated. Species, stability constants and forces driving the interaction of the host with guests having different sizes, shapes and charge in buffered aqueous solution at neutral pH were determined by ITC experiments. The guests were selected as model molecules for examining the recognition processes by containers potentially exploitable for the encapsulation/transport of charged species of biological relevance. Results highlighted the capabilities of the prismarene to encapsulate mono and dicationic molecules and provide crucial information about the role played by the guest size and charge in the encapsulation process. The stability of the host-guest complexes formed by PrS[5]carboxy with the ammonium cations is significantly affected by the structural features of the differently charged guests, while the affinity values determined for PrS[6]carboxy are quite comparable for all the cations investigated regardless of the properties of the guests. The inclusion of ammonium cations into PrS[5]carboxy is driven by enthalpically favourable attractive forces whilst, in the case of PrS[6]carboxy, the inclusion of monocations is an entropically favoured and driven process while enthalpy drives the complexation of the doubly charged guests. Overall, this doctoral thesis provides a detailed picture of the formation of metal-coordinated assemblies containing suitable drugs as well as of the solution thermodynamics and mechanisms involving multiple non-covalent, weak interactions. This information was revealed to be essential for the rational design and efficient application of the metal-based systems and macrocyclic receptors in solution. The strategy of examining multiple solution equilibria including different species resulted very helpful in designing a variety of efficient drug delivery platforms able to simultaneously enhance the loading and the site- and time-controlled release of proper drugs as well as to increase their efficacy.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_Santonoceta GDG_def.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
10.9 MB
Formato
Adobe PDF
|
10.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.