In this paper we propose a deep learning model based on graph machine learning (i.e. Graph Attention Convolution) and a pretrained transformer language model (i.e. ELECTRA). Our model was developed to detect harmful tweets about COVID-19 and was used to tackle subtask 1C (harmful tweet detection) at the CheckThat!Lab shared task organized as part of CLEF 2022. In this binary classification task, our proposed model reaches a binary F1 score (positive class label, i.e. harmful tweet) of 0.28 on the test set. We demonstrate that our approach outperforms the official baseline by 8% and describe our model as well as the experimental setup and results in detail. We also refer to limitations of the approach and future research directions.

COURAGE at CheckThat! 2022: Harmful Tweet Detection using Graph Neural Networks and ELECTRA

Siino M.
2022-01-01

Abstract

In this paper we propose a deep learning model based on graph machine learning (i.e. Graph Attention Convolution) and a pretrained transformer language model (i.e. ELECTRA). Our model was developed to detect harmful tweets about COVID-19 and was used to tackle subtask 1C (harmful tweet detection) at the CheckThat!Lab shared task organized as part of CLEF 2022. In this binary classification task, our proposed model reaches a binary F1 score (positive class label, i.e. harmful tweet) of 0.28 on the test set. We demonstrate that our approach outperforms the official baseline by 8% and describe our model as well as the experimental setup and results in detail. We also refer to limitations of the approach and future research directions.
2022
COVID-19
ELECTRA
harmful tweets
text graph classification
Twitter
File in questo prodotto:
File Dimensione Formato  
Lomonaco-2022-CLEF-VoR.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/607971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact