We introduce a novel approach to spectral clustering for three-way data, which integrates simultaneous dimensionality reduction and clustering. While con- ventional spectral clustering methods focus on two-way data and treat dimension- ality reduction and clustering separately, our proposed method extends to handle three-way data, capturing temporal repetition and multivariate interactions. This is the first method, which tackles this challenge purely through statistical techniques.

A Simultanious Spectral Clustering for Three-Way Data

Cinzia Di Nuzzo
Methodology
;
Salvatore Ingrassia
Methodology
2024-01-01

Abstract

We introduce a novel approach to spectral clustering for three-way data, which integrates simultaneous dimensionality reduction and clustering. While con- ventional spectral clustering methods focus on two-way data and treat dimension- ality reduction and clustering separately, our proposed method extends to handle three-way data, capturing temporal repetition and multivariate interactions. This is the first method, which tackles this challenge purely through statistical techniques.
2024
978-88-5509-645-4
Spectral Clustering
Dimensionality reduction
Three-way data
File in questo prodotto:
File Dimensione Formato  
DiNuzzo_Ingrassia_SDS2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 563.39 kB
Formato Adobe PDF
563.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/618431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact