Electron cyclotron resonance ion sources (ECRIS) are versatile devices for supplying accelerators with highly charged ion beams. They are based on the dual concepts of magnetic confinement using a minimum-B profile and resonance heating through coupling with microwaves. The resultant plasmas are composed of energetic electrons obeying multi-component distribution functions, and cold ions generated through collisional ionization and radiative processes. For many years now ECR plasmas have been used as mere ion sources but now the PANDORA (Plasmas for Astrophysics, Nuclear Decay Observations and Radiation for Archaeometry) facility at INFN-LNS aims to use them as a laboratory testbench to study phenomena of interest in astrophysics – in particular, the modification of β-decay rates in stellar plasmas, and heavy element opacity in early stage kilonovae. Given the significant complexity of the system, it is necessary to develop robust theoretical models of ECR plasmas that can allow studying these processes in a systematic manner, help connect laboratory measurements to stellar models, act as a powerful predictive tool to support experimental design and help advance our overall understanding of these devices. This thesis is intended to describe optimized 3D particle-in-cell (PIC) code suites aimed at modelling electron and ion dynamics in a self-consistent manner, capturing the most relevant physics for each and capable of furnishing space-resolved information on density, energy, charge state distribution (CSD) and atomic level populations. The work also discusses the possibility to use soft X-ray spectroscopy to benchmark the simulations by comparing the model-predicted fluorescence and bremsstrahlung with experimental data. And finally, it analyses the inputs required by the model of Takahashi and Yokoi for calculating the perturbed decay rates and how they can be correlated with the outputs from the PIC code suites. The thesis concludes with some perspectives on ongoing upgrades to the models and the potential to use them for both fundamental and applied research involving ECR ion sources.
Le sorgenti ioniche a risonanza ciclotronica elettronica (ECRIS) sono dispositivi versatili per fornire acceleratori con fasci ionici altamente carichi. Si basano sul duplice concetto di confinamento magnetico mediante profilo B minimo e riscaldamento per risonanza mediante accoppiamento con microonde. I plasmi risultanti sono composti da elettroni energetici che obbediscono a funzioni di distribuzione multicomponente e da ioni freddi generati attraverso la ionizzazione collisionale e processi radiativi. Per molti anni ormai i plasmi ECR sono stati utilizzati come semplici sorgenti ioniche, ma ora la struttura PANDORA (Plasmas for Astrophysics, Nuclear Decay Observations and Radiation for Archaeometry) dell’INFN-LNS mira a usarli come banco di prova di laboratorio per studiare fenomeni di interesse in astrofisica – in particolare, la modifica della rapidità di decadimento β nei plasmi stellari e l’opacità degli elementi pesanti nelle kilonovae alla fase iniziale. Data la notevole complessità del sistema, è necessario sviluppare robusti modelli teorici dei plasmi ECR che possano consentire di studiare questi processi in modo sistematico, aiutare a collegare le misurazioni di laboratorio ai modelli stellari, fungere da potente strumento predittivo per supportare la progettazione sperimentale e aiutare far progredire la nostra comprensione complessiva di questi dispositivi. Questa tesi ha lo scopo di descrivere suite di codici 3D ottimizzati di particelle in cella (PIC) volti a modellare la dinamica di elettroni e ioni in modo auto-coerente, catturando la fisica più rilevante per ciascuno e in grado di fornire informazioni risolte nello spazio su densità, energia, distribuzione dello stato di carica (CSD) e popolazioni a livello atomico. Il lavoro discute anche la possibilità di utilizzare la spettroscopia a raggi X molli per valutare le simulazioni confrontando la fluorescenza e la bremsstrahlung previste dal modello con i dati sperimentali. Infine, analizza gli input richiesti dal modello di Takahashi e Yokoi per calcolare la rapidità di decadimento perturbato e come possono essere correlati con gli output delle suite di codici PIC. La tesi si conclude con alcune prospettive sugli aggiornamenti in corso dei modelli e sul potenziale di utilizzarli sia per la ricerca fondamentale che per quella applicata che coinvolge sorgenti ioniche ECR.
Modellazione della rapidita di decadimento β nel plasma: studio teorico di PANDORA / Mishra, BHARAT BHUSHAN. - (2024 Apr 24).
Modellazione della rapidita di decadimento β nel plasma: studio teorico di PANDORA
MISHRA, BHARAT BHUSHAN
2024-04-24
Abstract
Electron cyclotron resonance ion sources (ECRIS) are versatile devices for supplying accelerators with highly charged ion beams. They are based on the dual concepts of magnetic confinement using a minimum-B profile and resonance heating through coupling with microwaves. The resultant plasmas are composed of energetic electrons obeying multi-component distribution functions, and cold ions generated through collisional ionization and radiative processes. For many years now ECR plasmas have been used as mere ion sources but now the PANDORA (Plasmas for Astrophysics, Nuclear Decay Observations and Radiation for Archaeometry) facility at INFN-LNS aims to use them as a laboratory testbench to study phenomena of interest in astrophysics – in particular, the modification of β-decay rates in stellar plasmas, and heavy element opacity in early stage kilonovae. Given the significant complexity of the system, it is necessary to develop robust theoretical models of ECR plasmas that can allow studying these processes in a systematic manner, help connect laboratory measurements to stellar models, act as a powerful predictive tool to support experimental design and help advance our overall understanding of these devices. This thesis is intended to describe optimized 3D particle-in-cell (PIC) code suites aimed at modelling electron and ion dynamics in a self-consistent manner, capturing the most relevant physics for each and capable of furnishing space-resolved information on density, energy, charge state distribution (CSD) and atomic level populations. The work also discusses the possibility to use soft X-ray spectroscopy to benchmark the simulations by comparing the model-predicted fluorescence and bremsstrahlung with experimental data. And finally, it analyses the inputs required by the model of Takahashi and Yokoi for calculating the perturbed decay rates and how they can be correlated with the outputs from the PIC code suites. The thesis concludes with some perspectives on ongoing upgrades to the models and the potential to use them for both fundamental and applied research involving ECR ion sources.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_BharatMishra_Final.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
19 MB
Formato
Adobe PDF
|
19 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.