Among affective disorders, Major Depressive Disorder (MDD) and Bipolar Disorder (BD) are among the most prevalent, chronic, and debilitating illnesses. Despite the increased attention from the scientific community on this subject, the nature of these disorders remains highly diverse. Therefore, achieving an accurate differential diagnosis between MDD and BD from cognitive, affective, and psychosocial perspectives poses a significant clinical challenge that is difficult to overcome but essential to start addressing. Existing literature reveals that statistically, traditional approaches have primarily relied on categorical classifications, linear models, and variance analyses, offering a limited understanding of the complex pathological conditions underlying both depressions. In this regard, the Network Analysis approach has emerged as a promising model to elucidate the mechanisms underlying MDD and BD in the depressive phase, providing a more accurate understanding of the dynamic interaction between the various components characterizing these pathologies. This doctoral thesis aimed to utilize the novel Network Analysis model to enhance the diagnosis of MDD) and BD. Specifically, 143 subjects were recruited at the Psychiatric Clinic "Villa dei Gerani" in Catania, Italy, including 87 with Major Depressive Disorder and 56 with Bipolar Disorder in the depressive phase. Among them, 57 patients completed a 12-week pharmacological treatment, allowing for the analysis of differences within the networks before and after the treatment. Research results indicate significant clinical differences between MDD and BD. In MDD patients at baseline (T0), a substantial interconnection between psychosocial functioning and the affective domain was observed, while direct connections to the neurocognitive domain were notably absent. Conversely, in BD patients, the network displayed a cluster of closely interconnected psychosocial nodes, predominantly driven by neurocognitive functions. However, correlations between these neurocognitive functions were relatively weaker. In both MDD and BD, the affective domain showed lower connectivity and was located at the periphery of the networks, indicating a less central role within the overall network structure. Regarding the network composition after 12 weeks of pharmacological treatment (T1), it emerged that the MDD network showed significant changes, with fewer connections and no specific distinction between cognitive and psychosocial-affective clusters. Antidepressants played a crucial role in guiding the network during this follow-up. As for the BD network, mood stabilizers assumed a central role in influencing network interactions, and there was an improvement in affective symptoms. The MoCA appeared to mediate the variance in HDRS, while the variance in BDI-II scores was partially explained by weak direct connections with mood stabilizers and second-generation antipsychotics. In conclusion, further investigations in this field are essential to further enhance the understanding of both depressions and contribute to the development of more effective treatment strategies. It is crucial to emphasize that these studies should be considered as a first and essential step toward this goal.
Tra i disturbi affettivi, quelli concernenti il Disturbo Depressivo Maggiore (MDD) e il Disturbo Bipolare (BD) rientrano tra le malattie più prevalenti, croniche ed invalidanti. Nonostante la maggiore attenzione che la comunità scientifica pone su tale argomento, la natura di questi disturbi rimane altamente eterogenea. Per questo motivo, effettuare una diagnosi differenziale accurata tra MDD e BD dal punto di vista cognitivo, affettivo e psicosociale, rappresenta un’enorme sfida clinica alla quale è difficile farvi fronte, ma che è necessario cominciare ad affrontare. All’interno della letteratura esistente emerge che dal punto di vista statistico, gli approcci tradizionali si sono basati principalmente su classificazioni categoriche, modelli lineari e analisi della varianza, fornendo una comprensione limitata delle complesse condizioni patologiche sottostanti ad entrambe le depressioni. A questo proposito, l’approccio della Network Analysis è emerso come un modello promettente per chiarire i meccanismi alla base del MDD e del BD in fase depressiva, perché fornisce una comprensione più accurata dell’interazione dinamica tra le diverse componenti che caratterizzano queste patologie. La presente tesi di dottorato, dunque, ha avuto l’obiettivo di utilizzare il nuovo modello della Network Analysis al fine di migliorare la diagnosi del Disturbo Depressivo Maggiore (MDD) e del Disturbo Bipolare (BD). Nello specifico, presso la Clinica Psichiatrica "Villa dei Gerani" di Catania (Italia), sono stati reclutati un totale di 143 soggetti, 87 dei quali con Disturbo Depressivo Maggiore e 56 con Disturbo Bipolare in fase depressiva. 57 dei 143 pazienti hanno completato un trattamento farmacologico di 12 settimane, e ciò ha consentito di analizzare le differenze all’interno delle reti prima e dopo tale trattamento. I risultati delle ricerche condotte mostrano differenze cliniche importanti tra MDD e BD. Nello specifico, nei pazienti con MDD, si è osservato al basale (T0) un’importante interconnessione tra il funzionamento psicosociale e il dominio affettivo, mentre i collegamenti diretti al dominio neurocognitivo erano notevolmente assenti. Al contrario, nei pazienti con BD, la rete mostrava un gruppo di nodi psicosociali strettamente interconnessi, prevalentemente guidati dalle funzioni neurocognitive. Tuttavia, le correlazioni tra queste funzioni neurocognitive erano relativamente più deboli. Sia in MDD che in BD, il dominio affettivo mostrava una connettività inferiore ed era situato alla periferia delle reti, indicando un ruolo meno centrale all'interno della struttura complessiva della rete. Per quanto riguarda la composizione di quest’ultima dopo le 12 settimane di trattamento farmacologico (T1), è emerso che la rete MDD ha mostrato cambiamenti significativi, con meno connessioni e nessuna specifica distinzione tra cluster cognitivi e psicosociali-affettivi. Gli antidepressivi, dunque, hanno svolto un ruolo essenziale nel guidare la rete durante tale follow-up. Per quanto riguarda la rete BD, invece, è emerso che gli stabilizzatori dell’umore hanno assunto un ruolo centrale nell’influenzare le interazioni della rete, e che vi è stato un miglioramento dei sintomi affettivi. Il MoCA sembrava mediare la varianza nell’HDRS, mentre la varianza nei punteggi BDI-II era parzialmente spiegata da deboli connessioni dirette con stabilizzatori dell’umore e antipsicotici di seconda generazione. In conclusione si può evidenziare che ulteriori indagini all’interno di questo campo sono essenziali al fine di migliorare ulteriormente la comprensione delle due depressioni e di contribuire allo sviluppo di strategie di trattamento più efficaci, ma è importante anche sottolineare che questi studi potrebbero essere considerati come un primo ed essenziale passo verso tale obiettivo.
Strumenti psicometrici per la diagnosi della depressione unipolare e bipolare: il contributo del modello dell'Analisi di Rete / Platania, GIUSEPPE ALESSIO. - (2024 Jun 18).
Strumenti psicometrici per la diagnosi della depressione unipolare e bipolare: il contributo del modello dell'Analisi di Rete
PLATANIA, GIUSEPPE ALESSIO
2024-06-18
Abstract
Among affective disorders, Major Depressive Disorder (MDD) and Bipolar Disorder (BD) are among the most prevalent, chronic, and debilitating illnesses. Despite the increased attention from the scientific community on this subject, the nature of these disorders remains highly diverse. Therefore, achieving an accurate differential diagnosis between MDD and BD from cognitive, affective, and psychosocial perspectives poses a significant clinical challenge that is difficult to overcome but essential to start addressing. Existing literature reveals that statistically, traditional approaches have primarily relied on categorical classifications, linear models, and variance analyses, offering a limited understanding of the complex pathological conditions underlying both depressions. In this regard, the Network Analysis approach has emerged as a promising model to elucidate the mechanisms underlying MDD and BD in the depressive phase, providing a more accurate understanding of the dynamic interaction between the various components characterizing these pathologies. This doctoral thesis aimed to utilize the novel Network Analysis model to enhance the diagnosis of MDD) and BD. Specifically, 143 subjects were recruited at the Psychiatric Clinic "Villa dei Gerani" in Catania, Italy, including 87 with Major Depressive Disorder and 56 with Bipolar Disorder in the depressive phase. Among them, 57 patients completed a 12-week pharmacological treatment, allowing for the analysis of differences within the networks before and after the treatment. Research results indicate significant clinical differences between MDD and BD. In MDD patients at baseline (T0), a substantial interconnection between psychosocial functioning and the affective domain was observed, while direct connections to the neurocognitive domain were notably absent. Conversely, in BD patients, the network displayed a cluster of closely interconnected psychosocial nodes, predominantly driven by neurocognitive functions. However, correlations between these neurocognitive functions were relatively weaker. In both MDD and BD, the affective domain showed lower connectivity and was located at the periphery of the networks, indicating a less central role within the overall network structure. Regarding the network composition after 12 weeks of pharmacological treatment (T1), it emerged that the MDD network showed significant changes, with fewer connections and no specific distinction between cognitive and psychosocial-affective clusters. Antidepressants played a crucial role in guiding the network during this follow-up. As for the BD network, mood stabilizers assumed a central role in influencing network interactions, and there was an improvement in affective symptoms. The MoCA appeared to mediate the variance in HDRS, while the variance in BDI-II scores was partially explained by weak direct connections with mood stabilizers and second-generation antipsychotics. In conclusion, further investigations in this field are essential to further enhance the understanding of both depressions and contribute to the development of more effective treatment strategies. It is crucial to emphasize that these studies should be considered as a first and essential step toward this goal.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_Giuseppe Alessio Platania completed.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.