Combinatorial interaction testing (CIT) is a testing technique that has proven to be effective in finding faults due to the interaction among inputs and in reducing the number of test cases, without losing effectiveness. Several tools have been proposed in the literature; however, generating tests remains a challenging task. In this paper, we present a technique for generating combinatorial test suites that uses a multi-thread architecture and exploits Satisfiability Modulo Theory (SMT) solvers to represent model parameters, constraints, and tuples, and it builds from SMT solver contexts the desired test suite. This technique is implemented by the tool KALI. The main advantage of using SMT solvers is that combinatorial models can contain all kinds of parameters and constraints. To evaluate our approach, we tested the impact of several optimizations and compared the performance of KALI with those of some existing tools for test generation. Our experiments confirm that the use of multi-threading is a promising technique but still requires some optimization for being more effective than the already available ones.

Multi-thread Combinatorial Test Generation with SMT solvers

Gargantini A.
Supervision
;
Calvagna A.
2023-01-01

Abstract

Combinatorial interaction testing (CIT) is a testing technique that has proven to be effective in finding faults due to the interaction among inputs and in reducing the number of test cases, without losing effectiveness. Several tools have been proposed in the literature; however, generating tests remains a challenging task. In this paper, we present a technique for generating combinatorial test suites that uses a multi-thread architecture and exploits Satisfiability Modulo Theory (SMT) solvers to represent model parameters, constraints, and tuples, and it builds from SMT solver contexts the desired test suite. This technique is implemented by the tool KALI. The main advantage of using SMT solvers is that combinatorial models can contain all kinds of parameters and constraints. To evaluate our approach, we tested the impact of several optimizations and compared the performance of KALI with those of some existing tools for test generation. Our experiments confirm that the use of multi-threading is a promising technique but still requires some optimization for being more effective than the already available ones.
2023
9781450395175
combinatorial testing
multi-thread test generation
satisfiability modulo theories
software testing
File in questo prodotto:
File Dimensione Formato  
multithread3555776.3577703.pdf

solo gestori archivio

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/650230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact