In this short paper, we present the devised solutions for the subject identification and relapse detection tasks, which are part of the e-Prevention Challenge hosted at the ICASSP 2023 conference [1] [2] [3]. We specifically design an ensemble scheme of six models - five transformer-based ones and a CNN model - for the identification of subjects from wearable devices, while a personalized - one for each subject - scheme is used for relapse detection in psychotic disorder. Our final submitted solutions yield top performance on both tracks of the challenge: we ranked 2nd on the subject identification task (with an accuracy of 93.85%) and 1st on the relapse detection task (with a ROC-AUC and PR-AUC of about 0.65). Code and details are available at https://github.com/perceivelab/e-prevention-icassp-2023.

Ensemble and Personalized Transformer Models for Subject Identification and Relapse Detection in E-Prevention Challenge

Calcagno, Salvatore;Mineo, Raffaele;Giordano, Daniela;Spampinato, Concetto
2023-01-01

Abstract

In this short paper, we present the devised solutions for the subject identification and relapse detection tasks, which are part of the e-Prevention Challenge hosted at the ICASSP 2023 conference [1] [2] [3]. We specifically design an ensemble scheme of six models - five transformer-based ones and a CNN model - for the identification of subjects from wearable devices, while a personalized - one for each subject - scheme is used for relapse detection in psychotic disorder. Our final submitted solutions yield top performance on both tracks of the challenge: we ranked 2nd on the subject identification task (with an accuracy of 93.85%) and 1st on the relapse detection task (with a ROC-AUC and PR-AUC of about 0.65). Code and details are available at https://github.com/perceivelab/e-prevention-icassp-2023.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/653391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact