Fingerprints are one of the most copious evidence in a crime scene and, for this reason, they are frequently used by law enforcement for identification of individuals. But fingerprints can be altered. 'Altered fingerprints' refers to intentionally damage of the friction ridge pattern and they are often used by smart criminals in hope to evade law enforcement. We use a deep neural network approach training an Inception-v3 architecture. This paper proposes a method for detection of altered fingerprints, identification of types of alterations and recognition of gender, hand and fingers. We also produce activation maps that show which part of a fingerprint the neural network has focused on, in order to detect where alterations are positioned. The proposed approach achieves an accuracy of 98.21%, 98.46%, 92.52%, 97.53% and 92,18% for the classification of fakeness, alterations, gender, hand and fingers, respectively on the SO.CO.FING. dataset.

Single Architecture and Multiple task deep Neural Network for Altered Fingerprint Analysis

Giudice O.;Litrico M.;Battiato S.
2020-01-01

Abstract

Fingerprints are one of the most copious evidence in a crime scene and, for this reason, they are frequently used by law enforcement for identification of individuals. But fingerprints can be altered. 'Altered fingerprints' refers to intentionally damage of the friction ridge pattern and they are often used by smart criminals in hope to evade law enforcement. We use a deep neural network approach training an Inception-v3 architecture. This paper proposes a method for detection of altered fingerprints, identification of types of alterations and recognition of gender, hand and fingers. We also produce activation maps that show which part of a fingerprint the neural network has focused on, in order to detect where alterations are positioned. The proposed approach achieves an accuracy of 98.21%, 98.46%, 92.52%, 97.53% and 92,18% for the classification of fakeness, alterations, gender, hand and fingers, respectively on the SO.CO.FING. dataset.
2020
altered fingerprints
biometric analysis
inception
Multimedia forensics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/666495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact