Active interfaces are multifunctional and pluripotent building blocks for innovative technologies and advanced devices. Their ability to respond to different stimuli adapting their properties and acting on the surrounding environment highlights their central role in several studies for versatile application in different fields, including life science. In order to fully exploit their functionalities, an accurate characterization of their physical chemical properties is necessary. In the first part of this project smart interfaces able to drive protein adsorption are obtained by applying different surface modification strategies. The study of protein adsorption at solid-liquid interface is a widely investigated research field because of its crucial relevance in biomaterial and healthcare applications. The surfaces were engineered by functionalizing the substate with specific and controlled anchoring sites for the formation of stable and uniform layer of protein molecules for bio-application. Moreover, a detailed characterization of the interaction between proteins and surfaces were provided, by analysing the surface properties effect on protein adsorption, implementing experimental results with molecular dynamics simulations. Adsorption kinetics and thermodynamics studies have been performed to identify protein-surface and protein-protein interactions to deep understand the adsorption mechanisms induced by the different surface characteristics. Additionally, in the context of smart materials, conductive polymers have emerged in recent years as promising materials in the field of bioelectronics and tissue engineering due to their interesting mixed ionic-electronic conductivity, biocompatibility, and tunable physico-chemical properties. In the second part of this project different studies based on conductive polymers, with a focus on bare P3HT and P3HT-based blends, to interface with cells for biomedical applications are presented. The attention was focused on the characterization of morphological, nanomechanical and physico-chemical properties of the surfaces. Moreover, the adsorption study of extracellular matrix proteins was performed to estimate the first interactions with biological environment, since it could drive the cell response. Finally, the biocompatibility with different cell lines, neuronal and mesenchymal, was investigated to test the cell viability, proliferation, and differentiation via the expression of specific markers. The very promising results highlighted the polymer capability to modulate cellular behaviour through electrical, mechanical, and interfacial properties and induce osteogenic or neurogenic differentiation even in absence of specific growth medium and differentiation factors. These studies pave the way to further study for potential applications of these biomaterials in biotechnology and biomolecular engineering.
Le interfacce attive sono elementi costitutivi multifunzionali e pluripotenti per tecnologie innovative e dispositivi avanzati. La loro capacità di rispondere a stimoli diversi, adattando le loro proprietà e agendo sull'ambiente circostante, evidenzia il loro ruolo centrale in numerosi studi per applicazioni versatili in diversi campi, tra cui le scienze della vita. Per sfruttare appieno le loro funzionalità, è necessaria una caratterizzazione accurata delle loro proprietà chimico-fisiche. Nella prima parte del progetto, sono state ottenute interfacce intelligenti in grado di guidare l'adsorbimento delle proteine applicando diverse strategie di modifica superficiale. Lo studio dell'adsorbimento delle proteine all'interfaccia solido-liquido è un campo di ricerca ampiamente studiato a causa della sua importanza cruciale per lo studio di biomateriali e per applicazioni sanitarie. Le superfici sono state progettate funzionalizzando il substrato con siti di ancoraggio specifici e controllati per la formazione di uno strato stabile e uniforme di molecole proteiche per la bio-applicazione. Inoltre, è stata fornita una caratterizzazione dettagliata dell'interazione tra proteine e superfici, analizzando l'effetto delle proprietà superficiali sull'adsorbimento delle proteine, implementando risultati sperimentali con simulazioni di dinamica molecolare. Studi di cinetica e termodinamica dell'adsorbimento sono stati effettuati per identificare le interazioni proteina-superficie e proteina-proteina per comprendere approfonditamente i meccanismi di adsorbimento indotti dalle diverse caratteristiche della superficie. In aggiunta, nel contesto dei materiali intelligenti, i polimeri conduttori sono emersi negli ultimi anni come materiali promettenti nel campo della bioelettronica e dell'ingegneria tissutale a causa della loro interessante conduttività mista ionico-elettronica, la biocompatibilità e le loro proprietà chimico-fisiche modulabili. Nella seconda parte del progetto vengono presentati diversi studi basati su polimeri conduttivi, con particolare attenzione alle miscele a base di P3HT e al solo P3HT, per l'interfaccia con cellule per applicazioni biomediche. L'attenzione è stata rivolta alla caratterizzazione delle proprietà morfologiche, nanomeccaniche e chimico-fisiche delle superfici. Inoltre, lo studio di adsorbimento delle proteine della matrice extracellulare è stato eseguito per stimare le prime interazioni con l'ambiente biologico, dal momento che potrebbe guidare la risposta cellulare. Infine, la biocompatibilità con diverse linee cellulari, neuronali e mesenchimali, è stata studiata per testare la vitalità cellulare, la proliferazione e la differenziazione attraverso l'espressione di marcatori specifici. I risultati molto promettenti hanno evidenziato la capacità del polimero di modulare il comportamento cellulare attraverso le proprietà elettriche, meccaniche e interfacciali e di indurre una differenziazione osteogenica o neurogenica anche in assenza di un mezzo di crescita specifico e di fattori di differenziazione. Questi studi aprono la strada a ulteriori studi per potenziali applicazioni di questi biomateriali nella biotecnologia e nell'ingegneria biomolecolare.
Study of Structural and Physico-chemical Properties of Active Interfaces [Studio delle proprietà strutturali e chimico-fisiche di Interfacce Attive] / Campione, Paola. - (2025 Feb 20).
Study of Structural and Physico-chemical Properties of Active Interfaces [Studio delle proprietà strutturali e chimico-fisiche di Interfacce Attive]
CAMPIONE, PAOLA
2025-02-20
Abstract
Active interfaces are multifunctional and pluripotent building blocks for innovative technologies and advanced devices. Their ability to respond to different stimuli adapting their properties and acting on the surrounding environment highlights their central role in several studies for versatile application in different fields, including life science. In order to fully exploit their functionalities, an accurate characterization of their physical chemical properties is necessary. In the first part of this project smart interfaces able to drive protein adsorption are obtained by applying different surface modification strategies. The study of protein adsorption at solid-liquid interface is a widely investigated research field because of its crucial relevance in biomaterial and healthcare applications. The surfaces were engineered by functionalizing the substate with specific and controlled anchoring sites for the formation of stable and uniform layer of protein molecules for bio-application. Moreover, a detailed characterization of the interaction between proteins and surfaces were provided, by analysing the surface properties effect on protein adsorption, implementing experimental results with molecular dynamics simulations. Adsorption kinetics and thermodynamics studies have been performed to identify protein-surface and protein-protein interactions to deep understand the adsorption mechanisms induced by the different surface characteristics. Additionally, in the context of smart materials, conductive polymers have emerged in recent years as promising materials in the field of bioelectronics and tissue engineering due to their interesting mixed ionic-electronic conductivity, biocompatibility, and tunable physico-chemical properties. In the second part of this project different studies based on conductive polymers, with a focus on bare P3HT and P3HT-based blends, to interface with cells for biomedical applications are presented. The attention was focused on the characterization of morphological, nanomechanical and physico-chemical properties of the surfaces. Moreover, the adsorption study of extracellular matrix proteins was performed to estimate the first interactions with biological environment, since it could drive the cell response. Finally, the biocompatibility with different cell lines, neuronal and mesenchymal, was investigated to test the cell viability, proliferation, and differentiation via the expression of specific markers. The very promising results highlighted the polymer capability to modulate cellular behaviour through electrical, mechanical, and interfacial properties and induce osteogenic or neurogenic differentiation even in absence of specific growth medium and differentiation factors. These studies pave the way to further study for potential applications of these biomaterials in biotechnology and biomolecular engineering.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_ Paola Campione.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
8.49 MB
Formato
Adobe PDF
|
8.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.