The rise of Large Language Models (LLMs) has brought about a notable shift, rendering them increasingly ubiquitous and readily accessible. Across diverse platforms such as social media platforms, news outlets, educational platforms, question-answering forums, and even academic domains, there has been a notable surge in machine-generated content. Recent iterations of LLMs, exemplified by models like ChatGPT and GPT-4, exhibit a remarkable ability to produce coherent and contextually relevant responses across a broad spectrum of user inquiries. The fluidity and sophistication of these generated texts position LLMs as compelling candidates for substituting human labour in numerous applications. Nevertheless, this proliferation of machine-generated content has raised apprehensions regarding potential misuse, including the dissemination of misinformation and disruption of educational ecosystems. Given that humans marginally outperform random chance in discerning between machine-generated and human-authored text, there arises a pressing imperative to develop automated systems capable of accurately distinguishing machine-generated text. This pursuit is driven by the overarching objective of curbing the potential misuse of machine-generated content. Our manuscript delineates the approach we adopted for participation in this competition. Specifically, we detail the fine-tuning and the use of a DistilBERT model for classifying each sample in the test set provided. Our submission is able to reach an accuracy equal to 0.754 in place of the worst result obtained at the competition that is equal to 0.231.

BadRock at SemEval-2024 Task 8: DistilBERT to Detect Multigenerator, Multidomain and Multilingual Black-Box Machine-Generated Text

Siino M.
Primo
2024-01-01

Abstract

The rise of Large Language Models (LLMs) has brought about a notable shift, rendering them increasingly ubiquitous and readily accessible. Across diverse platforms such as social media platforms, news outlets, educational platforms, question-answering forums, and even academic domains, there has been a notable surge in machine-generated content. Recent iterations of LLMs, exemplified by models like ChatGPT and GPT-4, exhibit a remarkable ability to produce coherent and contextually relevant responses across a broad spectrum of user inquiries. The fluidity and sophistication of these generated texts position LLMs as compelling candidates for substituting human labour in numerous applications. Nevertheless, this proliferation of machine-generated content has raised apprehensions regarding potential misuse, including the dissemination of misinformation and disruption of educational ecosystems. Given that humans marginally outperform random chance in discerning between machine-generated and human-authored text, there arises a pressing imperative to develop automated systems capable of accurately distinguishing machine-generated text. This pursuit is driven by the overarching objective of curbing the potential misuse of machine-generated content. Our manuscript delineates the approach we adopted for participation in this competition. Specifically, we detail the fine-tuning and the use of a DistilBERT model for classifying each sample in the test set provided. Our submission is able to reach an accuracy equal to 0.754 in place of the worst result obtained at the competition that is equal to 0.231.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/689431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact