Rivers are complex and dynamic systems, subject to continuous morphological changes that become particularly evident in response to flood events. However, traditional methodologies for studying flood propagation tend to focus predominantly on hydrodynamic aspects, such as flow velocity and water levels, often neglecting the morphological transformations that these events can induce in the river course. This limited approach risks providing an incomplete view of flood phenomena and their effects on the territory, underestimating the influence of extreme events on river configurations and, consequently, on the overall response of the fluvial system to subsequent events. In this context, the present work proposes an innovative approach that integrates hydrodynamic analysis with morphological modeling, utilizing advanced two-dimensional numerical modeling techniques. The objective is to provide a more comprehensive and integrated understanding of hydraulic hazards and fluvial evolutionary processes, while offering a more effective and versatile tool for sustainable river management and planning. The research was applied to two distinct case studies, adopting different methodologies for each. In the case of the Tordera River in Catalonia, a two-dimensional fixed-bed numerical model was implemented to analyze the hydrodynamic responses of the fluvial system to a significant flood event that occurred in January 2020. The aim was to correlate the observed morphological changes with hydraulic parameters such as flow velocity, shear stress, and stream power. This approach, based on traditional hydrodynamic variables, allows for the identification of areas most susceptible to morphological variations, proving to be a useful tool for risk assessment and land management. In the second case study, concerning the Simeto River in Sicily, a two-dimensional mobile-bed numerical model was adopted to simulate the morphological evolution of a 7.5 km stretch of river over a five-year period, from 2008 to 2013. The modeling was validated using territorial data obtained from the comparison of two Digital Terrain Models (DTMs), reconstructing and simulating the main historical flood events that occurred within this time frame. The correct parameterization of sediment transport within the model, along with a granulometric analysis of the sediments characterizing the study area, enabled the creation of a robust and dynamic model. The results, with determination coefficient (R²) values exceeding 0.94 in most of the analyses conducted, demonstrated a high predictive capacity of the model, showing good alignment between the numerical predictions and the observed morphological changes. Although there is room for improvement, particularly in the simulation of specific evolutionary processes, the research has already achieved a significant milestone, paving the way for future applications in different fluvial contexts. Further developments could refine the model to simulate future scenarios, further enhancing predictive capability and providing even more detailed insights for the sustainable management of water resources. This approach represents a significant advancement over traditional studies, offering an integrated view that combines hydrodynamic analysis with morphological modeling, contributing to a more comprehensive understanding and more informed management of river systems.
I fiumi sono sistemi complessi e dinamici, soggetti a continui cambiamenti morfologici che diventano particolarmente evidenti in risposta agli eventi di piena. Tuttavia, le metodologie tradizionali per lo studio della propagazione delle piene tendono a concentrarsi prevalentemente sugli aspetti idrodinamici, come la velocità del flusso e i livelli d'acqua, trascurando spesso le trasformazioni morfologiche che questi eventi possono indurre nel corso del fiume. Questo approccio limitato rischia di fornire una visione incompleta dei fenomeni di piena e dei loro effetti sul territorio, sottovalutando l’influenza degli eventi estremi sulle dinamiche fluviali e , di conseguenza, sulla risposta complessiva del sistema fluviale a eventi successivi. In questo contesto, il presente lavoro propone un approccio innovativo che integra l'analisi idrodinamica con la modellazione morfologica, utilizzando tecniche avanzate di modellazione numerica bidimensionale. L'obiettivo è fornire una comprensione più completa e integrata dei rischi idraulici e dei processi evolutivi fluviali, offrendo al contempo uno strumento più efficace e versatile per la gestione e la pianificazione sostenibile dei fiumi. La ricerca è stata applicata a due casi studio distinti, adottando metodologie diverse per ciascuno. Nel caso del fiume Tordera in Catalogna, è stato implementato un modello numerico bidimensionale a letto fisso per analizzare le risposte idrodinamiche del sistema fluviale a un significativo evento di piena verificatosi nel gennaio 2020. L'obiettivo era correlare i cambiamenti morfologici osservati con parametri idraulici come velocità del flusso, tensione tangenziale e potenza del flusso. Questo approccio, basato su variabili idrodinamiche tradizionali, consente di identificare le aree più suscettibili a variazioni morfologiche, dimostrandosi uno strumento utile per la valutazione del rischio e la gestione del territorio. Nel secondo caso studio, relativo al fiume Simeto in Sicilia, è stato adottato un modello numerico bidimensionale a letto mobile per simulare l'evoluzione morfologica di un tratto di fiume di 7,5 km su un periodo di cinque anni, dal 2008 al 2013. La modellazione è stata validata utilizzando dati territoriali ottenuti dal confronto tra due Modelli Digitali del Terreno (DTM), ricostruendo e simulando i principali eventi di piena storici verificatisi in questo intervallo di tempo. La corretta parametrizzazione del trasporto di sedimenti nel modello, insieme a un'analisi granulometrica dei sedimenti caratterizzanti l'area di studio, ha permesso la creazione di un modello robusto e dinamico. I risultati, con valori del coefficiente di determinazione (R²) superiori a 0,94 nella maggior parte delle analisi condotte, hanno dimostrato un'elevata capacità predittiva del modello, mostrando una buona coerenza tra le previsioni numeriche e i cambiamenti morfologici osservati. Nonostante ci siano margini di miglioramento, in particolare nella simulazione di specifici processi evolutivi, la ricerca ha già raggiunto un traguardo significativo, aprendo la strada a future applicazioni in diversi contesti fluviali. Ulteriori sviluppi potrebbero perfezionare il modello per simulare scenari futuri, migliorandone ulteriormente le capacità predittive e fornendo intuizioni ancora più dettagliate per una gestione sostenibile delle risorse idriche. Questo approccio rappresenta un significativo progresso rispetto agli studi tradizionali, offrendo una visione integrata che combina analisi idrodinamica e modellazione morfologica, contribuendo a una comprensione più approfondita e a una gestione più informata dei sistemi fluviali.
Assessment of river dynamics during floods: catchment-scale predictive models [Valutazione delle dinamiche fluviali durante gli eventi di piena: modelli di previsione a scala di bacino] / Sanfilippo, Mariano. - (2025 Feb 28).
Assessment of river dynamics during floods: catchment-scale predictive models [Valutazione delle dinamiche fluviali durante gli eventi di piena: modelli di previsione a scala di bacino]
SANFILIPPO, MARIANO
2025-02-28
Abstract
Rivers are complex and dynamic systems, subject to continuous morphological changes that become particularly evident in response to flood events. However, traditional methodologies for studying flood propagation tend to focus predominantly on hydrodynamic aspects, such as flow velocity and water levels, often neglecting the morphological transformations that these events can induce in the river course. This limited approach risks providing an incomplete view of flood phenomena and their effects on the territory, underestimating the influence of extreme events on river configurations and, consequently, on the overall response of the fluvial system to subsequent events. In this context, the present work proposes an innovative approach that integrates hydrodynamic analysis with morphological modeling, utilizing advanced two-dimensional numerical modeling techniques. The objective is to provide a more comprehensive and integrated understanding of hydraulic hazards and fluvial evolutionary processes, while offering a more effective and versatile tool for sustainable river management and planning. The research was applied to two distinct case studies, adopting different methodologies for each. In the case of the Tordera River in Catalonia, a two-dimensional fixed-bed numerical model was implemented to analyze the hydrodynamic responses of the fluvial system to a significant flood event that occurred in January 2020. The aim was to correlate the observed morphological changes with hydraulic parameters such as flow velocity, shear stress, and stream power. This approach, based on traditional hydrodynamic variables, allows for the identification of areas most susceptible to morphological variations, proving to be a useful tool for risk assessment and land management. In the second case study, concerning the Simeto River in Sicily, a two-dimensional mobile-bed numerical model was adopted to simulate the morphological evolution of a 7.5 km stretch of river over a five-year period, from 2008 to 2013. The modeling was validated using territorial data obtained from the comparison of two Digital Terrain Models (DTMs), reconstructing and simulating the main historical flood events that occurred within this time frame. The correct parameterization of sediment transport within the model, along with a granulometric analysis of the sediments characterizing the study area, enabled the creation of a robust and dynamic model. The results, with determination coefficient (R²) values exceeding 0.94 in most of the analyses conducted, demonstrated a high predictive capacity of the model, showing good alignment between the numerical predictions and the observed morphological changes. Although there is room for improvement, particularly in the simulation of specific evolutionary processes, the research has already achieved a significant milestone, paving the way for future applications in different fluvial contexts. Further developments could refine the model to simulate future scenarios, further enhancing predictive capability and providing even more detailed insights for the sustainable management of water resources. This approach represents a significant advancement over traditional studies, offering an integrated view that combines hydrodynamic analysis with morphological modeling, contributing to a more comprehensive understanding and more informed management of river systems.| File | Dimensione | Formato | |
|---|---|---|---|
|
Mariano Sanfilippo PhD thesis.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
32.76 MB
Formato
Adobe PDF
|
32.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


