Contaminants of emerging concern (CEC), such as pharmaceuticals, personal care products, microplastics, bisphenol-A, and PFAS, have been widely detected in water systems, posing risks to ecosystems, wildlife, and human health, including cancer and endocrine disruption. Despite monitoring programs like the EU Watch List and US Contaminant Candidate List, many regions lack regulations to limit CEC release. Wastewater treatment plants (WWTPs) are a major source of CEC, as conventional treatments fail to remove persistent contaminants, necessitating advanced oxidation processes (AOPs). While AOPs can degrade many CEC, compounds like PFAS often resist these treatments, posing significant challenges. Implementing AOPs at full-scale WWTPs also requires efficient CEC monitoring, which is hindered by the limitations of conventional analytical methods that are costly and time-consuming. Real-time monitoring is critical for optimizing processes and maintaining water quality standards. Fluorescence spectroscopy offers a cost-effective, rapid alternative for monitoring wastewater quality, with recent advancements enabling real-time applications through fluorescence sensors. This research integrates advanced water treatments with real-time monitoring to enhance CEC removal and process control. A customized fluorescence sensor was tested in various wastewater effluents, demonstrating its effectiveness in monitoring CEC removal and managing operational parameters to reduce environmental impacts, such as the carbon footprint. The sensor’s sensitivity, ease of use, and rapid response make it suitable for in-situ applications during AOPs. The system provides real-time data to assess treatment efficiency and regulate UV irradiation and chemical use, addressing challenges associated with controlling highly reactive species in advanced processes. This innovative approach promotes the use of fluorescence sensors for optimizing quaternary treatments and encourages further research to extend their application to other advanced water treatment technologies.

I contaminanti emergenti (CEC), come prodotti farmaceutici, cosmetici, microplastiche, bisfenolo-A e PFAS, sono stati ampiamente rilevati nei sistemi idrici, rappresentando un rischio per ecosistemi, fauna selvatica e salute umana, con effetti documentati come il cancro e la disfunzione endocrina. Nonostante programmi di monitoraggio come l’EU Watch List e la Contaminant Candidate List degli Stati Uniti, molte regioni mancano di regolamenti per limitare il rilascio dei CEC. Gli impianti di trattamento delle acque reflue (WWTP) sono una delle principali fonti di CEC, poiché i trattamenti convenzionali non riescono a rimuovere i contaminanti persistenti, rendendo necessari processi avanzati di ossidazione (AOP). Sebbene gli AOP possano degradare molti CEC, composti come i PFAS spesso resistono a questi trattamenti, presentando sfide significative. L’implementazione degli AOP su scala industriale richiede inoltre un monitoraggio efficiente dei CEC, ostacolato dalle limitazioni dei metodi analitici tradizionali, che sono costosi e dispendiosi in termini di tempo. Il monitoraggio in tempo reale è cruciale per ottimizzare i processi e mantenere gli standard di qualità dell’acqua. La spettroscopia a fluorescenza offre un’alternativa economica e rapida per il monitoraggio della qualità delle acque reflue, con recenti progressi che ne consentono l’applicazione in tempo reale attraverso sensori di fluorescenza. Questa ricerca integra trattamenti avanzati delle acque con strumenti di monitoraggio in tempo reale per migliorare la rimozione dei CEC e il controllo dei processi. Un sensore di fluorescenza personalizzato è stato testato in diversi effluenti, dimostrandosi efficace nel monitorare la rimozione dei CEC e nel gestire i parametri operativi, riducendo l’impatto ambientale, come l’impronta di carbonio. Il sistema fornisce dati in tempo reale per valutare l’efficienza dei trattamenti e regolare l’uso di radiazioni UV e sostanze chimiche, affrontando le sfide legate al controllo delle specie altamente reattive. Questo approccio innovativo promuove l’uso di sensori di fluorescenza per ottimizzare i trattamenti avanzati e incoraggia ulteriori ricerche per estenderne l’applicazione ad altre tecnologie di trattamento delle acque.

Development of innovative systems for the control of persistent organic compounds in waters: combining advanced treatment processes and online fluorescence sensors [Sviluppo di sistemi innovativi per il controllo di contaminanti organici persistenti nelle acque: integrare processi di trattamento avanzato e sensori di fluorescenza online] / Marino, Luigi. - (2025 Apr 07).

Development of innovative systems for the control of persistent organic compounds in waters: combining advanced treatment processes and online fluorescence sensors [Sviluppo di sistemi innovativi per il controllo di contaminanti organici persistenti nelle acque: integrare processi di trattamento avanzato e sensori di fluorescenza online]

MARINO, LUIGI
2025-04-07

Abstract

Contaminants of emerging concern (CEC), such as pharmaceuticals, personal care products, microplastics, bisphenol-A, and PFAS, have been widely detected in water systems, posing risks to ecosystems, wildlife, and human health, including cancer and endocrine disruption. Despite monitoring programs like the EU Watch List and US Contaminant Candidate List, many regions lack regulations to limit CEC release. Wastewater treatment plants (WWTPs) are a major source of CEC, as conventional treatments fail to remove persistent contaminants, necessitating advanced oxidation processes (AOPs). While AOPs can degrade many CEC, compounds like PFAS often resist these treatments, posing significant challenges. Implementing AOPs at full-scale WWTPs also requires efficient CEC monitoring, which is hindered by the limitations of conventional analytical methods that are costly and time-consuming. Real-time monitoring is critical for optimizing processes and maintaining water quality standards. Fluorescence spectroscopy offers a cost-effective, rapid alternative for monitoring wastewater quality, with recent advancements enabling real-time applications through fluorescence sensors. This research integrates advanced water treatments with real-time monitoring to enhance CEC removal and process control. A customized fluorescence sensor was tested in various wastewater effluents, demonstrating its effectiveness in monitoring CEC removal and managing operational parameters to reduce environmental impacts, such as the carbon footprint. The sensor’s sensitivity, ease of use, and rapid response make it suitable for in-situ applications during AOPs. The system provides real-time data to assess treatment efficiency and regulate UV irradiation and chemical use, addressing challenges associated with controlling highly reactive species in advanced processes. This innovative approach promotes the use of fluorescence sensors for optimizing quaternary treatments and encourages further research to extend their application to other advanced water treatment technologies.
7-apr-2025
I contaminanti emergenti (CEC), come prodotti farmaceutici, cosmetici, microplastiche, bisfenolo-A e PFAS, sono stati ampiamente rilevati nei sistemi idrici, rappresentando un rischio per ecosistemi, fauna selvatica e salute umana, con effetti documentati come il cancro e la disfunzione endocrina. Nonostante programmi di monitoraggio come l’EU Watch List e la Contaminant Candidate List degli Stati Uniti, molte regioni mancano di regolamenti per limitare il rilascio dei CEC. Gli impianti di trattamento delle acque reflue (WWTP) sono una delle principali fonti di CEC, poiché i trattamenti convenzionali non riescono a rimuovere i contaminanti persistenti, rendendo necessari processi avanzati di ossidazione (AOP). Sebbene gli AOP possano degradare molti CEC, composti come i PFAS spesso resistono a questi trattamenti, presentando sfide significative. L’implementazione degli AOP su scala industriale richiede inoltre un monitoraggio efficiente dei CEC, ostacolato dalle limitazioni dei metodi analitici tradizionali, che sono costosi e dispendiosi in termini di tempo. Il monitoraggio in tempo reale è cruciale per ottimizzare i processi e mantenere gli standard di qualità dell’acqua. La spettroscopia a fluorescenza offre un’alternativa economica e rapida per il monitoraggio della qualità delle acque reflue, con recenti progressi che ne consentono l’applicazione in tempo reale attraverso sensori di fluorescenza. Questa ricerca integra trattamenti avanzati delle acque con strumenti di monitoraggio in tempo reale per migliorare la rimozione dei CEC e il controllo dei processi. Un sensore di fluorescenza personalizzato è stato testato in diversi effluenti, dimostrandosi efficace nel monitorare la rimozione dei CEC e nel gestire i parametri operativi, riducendo l’impatto ambientale, come l’impronta di carbonio. Il sistema fornisce dati in tempo reale per valutare l’efficienza dei trattamenti e regolare l’uso di radiazioni UV e sostanze chimiche, affrontando le sfide legate al controllo delle specie altamente reattive. Questo approccio innovativo promuove l’uso di sensori di fluorescenza per ottimizzare i trattamenti avanzati e incoraggia ulteriori ricerche per estenderne l’applicazione ad altre tecnologie di trattamento delle acque.
contaminants of emerging concern; fluorescence; real-time monitoring; wastewater; quaternary treatments
contaminanti emergenti; fluorescenza; monitoraggio in tempo reale; trattamenti quaternari; acque reflue
Development of innovative systems for the control of persistent organic compounds in waters: combining advanced treatment processes and online fluorescence sensors [Sviluppo di sistemi innovativi per il controllo di contaminanti organici persistenti nelle acque: integrare processi di trattamento avanzato e sensori di fluorescenza online] / Marino, Luigi. - (2025 Apr 07).
File in questo prodotto:
File Dimensione Formato  
PhD Thesis_Luigi Marino.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 8.28 MB
Formato Adobe PDF
8.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/690710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact