Let $I$ be an ideal in a Noetherian ring $R$ and let $\widetilde{I}$ be its Ratliff-Rush closure. In this paper we study the asymptotic Ratliff-Rush number, i.e. $h(I)=\min\{n\in\mathbb N_+ \mid I^m=\widetilde{I^m}, \ \forall \ m\ge n\}$, in the one-dimensional case. Since $1\le h(I)\le r(I)$, where $r(I)$ is the reduction number of $I$, we look for conditions that determine the extremal values of $h(I)$.

On the Ratliff-Rush closure of an ideal of a one-dimensional ring

Marco D'Anna;Vincenzo Micale
2025-01-01

Abstract

Let $I$ be an ideal in a Noetherian ring $R$ and let $\widetilde{I}$ be its Ratliff-Rush closure. In this paper we study the asymptotic Ratliff-Rush number, i.e. $h(I)=\min\{n\in\mathbb N_+ \mid I^m=\widetilde{I^m}, \ \forall \ m\ge n\}$, in the one-dimensional case. Since $1\le h(I)\le r(I)$, where $r(I)$ is the reduction number of $I$, we look for conditions that determine the extremal values of $h(I)$.
2025
978-3-031-91224-5
Mathematics - Commutative Algebra
Ideals, integral closure, Ratliff Rush closure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/692489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact