CRIB (CNS Radio-Isotope Beam separator) is a low-energy RI beam separator of Center for Nuclear Study (CNS), the University of Tokyo. Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the RI beams at CRIB, forming international collaborations. A striking method to study astrophyiscal reactions involving radioactive nuclei is the thick-target method in inverse kinematics. Several astrophysical alpha-induced reactions have been be studied with that method at CRIB. A recent example is on the α resonant scattering with a radioactive 7Be beam. This study is related to the astrophysical 7Be(α,γ) reactions, important at hot p-p chain and νp-process in supernovae. There have been measurements based on several indirect methods, such as the asymptotic normalization coefficient (ANC) and Trojan horse method (THM). The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α) 15O reaction at astrophysical energies via the three body reaction 2H(18F, α 15O)n. The 18F(p, α) 15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time

Experimental Studies of Light-Ion Nuclear Reactions Using Low-Energy RI Beams

CHERUBINI, SILVIO;G. G. Rapisarda;ROMANO, Stefano;
2017-01-01

Abstract

CRIB (CNS Radio-Isotope Beam separator) is a low-energy RI beam separator of Center for Nuclear Study (CNS), the University of Tokyo. Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the RI beams at CRIB, forming international collaborations. A striking method to study astrophyiscal reactions involving radioactive nuclei is the thick-target method in inverse kinematics. Several astrophysical alpha-induced reactions have been be studied with that method at CRIB. A recent example is on the α resonant scattering with a radioactive 7Be beam. This study is related to the astrophysical 7Be(α,γ) reactions, important at hot p-p chain and νp-process in supernovae. There have been measurements based on several indirect methods, such as the asymptotic normalization coefficient (ANC) and Trojan horse method (THM). The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α) 15O reaction at astrophysical energies via the three body reaction 2H(18F, α 15O)n. The 18F(p, α) 15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time
2017
Nuclear reaction, Nuclear structure, RI beam
File in questo prodotto:
File Dimensione Formato  
jpscp.14.010503.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 546.13 kB
Formato Adobe PDF
546.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/72459
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact