Reconstruction techniques exploit a first building process using Low-resolution (LR) images to obtain a "draft" High Resolution (HR) image and then update the estimated HR by back-projection error reduction. This paper presents different HR draft image construction techniques and shows methods providing the best solution in terms of final perceived/measured quality. The following algorithms have been analysed: a proprietary Resolution Enhancement method (RE-ST); a Locally Adaptive Zooming Algorithm (LAZA); a Smart Interpolation by Anisotropie Diffusion (SIAD); a Directional Adaptive Edge-Interpolation (DAEI); a classical Bicubic interpolation and a Nearest Neighbour algorithm. The resulting HR images are obtained by merging the zoomed LR-pictures using two different strategies: average or median. To improve the corresponding HR images two adaptive error reduction techniques are applied in the last step: auto-iterative and uncertainty-reduction.

Analysis and Characterization of Super-Resolution Reconstruction Methods

BATTIATO, SEBASTIANO;GALLO, Giovanni;STANCO, FILIPPO
2003-01-01

Abstract

Reconstruction techniques exploit a first building process using Low-resolution (LR) images to obtain a "draft" High Resolution (HR) image and then update the estimated HR by back-projection error reduction. This paper presents different HR draft image construction techniques and shows methods providing the best solution in terms of final perceived/measured quality. The following algorithms have been analysed: a proprietary Resolution Enhancement method (RE-ST); a Locally Adaptive Zooming Algorithm (LAZA); a Smart Interpolation by Anisotropie Diffusion (SIAD); a Directional Adaptive Edge-Interpolation (DAEI); a classical Bicubic interpolation and a Nearest Neighbour algorithm. The resulting HR images are obtained by merging the zoomed LR-pictures using two different strategies: average or median. To improve the corresponding HR images two adaptive error reduction techniques are applied in the last step: auto-iterative and uncertainty-reduction.
9780819448170
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/76348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact