When the electrons stored in the ring of the European Synchrotron Radiation Facility (ESRF, Grenoble) scatter on a laser beam (Compton scattering in flight) the lower energy of the scattered electron spectra, the Compton Edge (CE), is given by the two body photon-electron relativistic kinematics and depends on the velocity of light. A precision measurement of the position of this CE as a function of the daily variations of the direction of the electron beam in an absolute reference frame provides a one-way test of Relativistic Kinematics and the isotropy of the velocity of light. The results of GRAAL-ESRF measurements improve the previously existing one-way limits, thus showing the efficiency of this method and the interest of further studies in this direction.
A new limit on the light speed isotropy from the GRAAL experiment at the ESRF
BELLINI, Vincenzo;RUSSO, Giuseppe;SUTERA, CONCETTA MARIA;
2012-01-01
Abstract
When the electrons stored in the ring of the European Synchrotron Radiation Facility (ESRF, Grenoble) scatter on a laser beam (Compton scattering in flight) the lower energy of the scattered electron spectra, the Compton Edge (CE), is given by the two body photon-electron relativistic kinematics and depends on the velocity of light. A precision measurement of the position of this CE as a function of the daily variations of the direction of the electron beam in an absolute reference frame provides a one-way test of Relativistic Kinematics and the isotropy of the velocity of light. The results of GRAAL-ESRF measurements improve the previously existing one-way limits, thus showing the efficiency of this method and the interest of further studies in this direction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.