he aim of this paper is to propose a computational model, inspired by Drosophila melanogaster, able to handle problems related to motor learning. The role of the Mushroom Bodies and the Central Complex in solving this problem is analyzed and plausible biologically inspired models are proposed. The designed computational models have been evaluated in simulation using a dynamic structure inspired by the fruit fly. The obtained results open the way to new neurobiological experiments focused to better understand the underlined mechanisms involved, to verify the feasibility of the hypotheses formulated and the significance of the obtained results

A computational model for motor learning in insects

ARENA, Paolo Pietro;
2013-01-01

Abstract

he aim of this paper is to propose a computational model, inspired by Drosophila melanogaster, able to handle problems related to motor learning. The role of the Mushroom Bodies and the Central Complex in solving this problem is analyzed and plausible biologically inspired models are proposed. The designed computational models have been evaluated in simulation using a dynamic structure inspired by the fruit fly. The obtained results open the way to new neurobiological experiments focused to better understand the underlined mechanisms involved, to verify the feasibility of the hypotheses formulated and the significance of the obtained results
2013
978-146736129-3
Biologically inspired models; Computational model; Drosophila melanogaster
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/84855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 0
social impact