On 2009 September 21, a filament eruption and the associated Coronal Mass Ejection (CME) was observed by the STEREO spacecraft. The CME originated from the southern hemisphere and showed a deflection of about 15° towards the heliospheric current sheet (HCS) during its propagation in the COR1 field-of-view (FOV). The aim of this paper is to provide a physical explanation for the strong deflection of the CME. We first use the STEREO observations in order to reconstruct the three dimensional (3D) trajectory of the CME. Starting from a magnetic configuration that closely resembles the potential field extrapolation for that date, we performed numerical magneto-hydrodynamics (MHD) simulations. By applying localized shearing motions, a CME is initiated in the simulation, showing a similar non-radial evolution, structure, and velocity as the observed event. The CME gets deflected towards the current sheet of the larger northern helmet streamer, due to an imbalance in the magnetic pressure and tension forces and finally it gets into the streamer and propagates along the heliospheric current sheet.

The role of streamers in the deflection of coronal mass ejections

Zuccarello F
2012-01-01

Abstract

On 2009 September 21, a filament eruption and the associated Coronal Mass Ejection (CME) was observed by the STEREO spacecraft. The CME originated from the southern hemisphere and showed a deflection of about 15° towards the heliospheric current sheet (HCS) during its propagation in the COR1 field-of-view (FOV). The aim of this paper is to provide a physical explanation for the strong deflection of the CME. We first use the STEREO observations in order to reconstruct the three dimensional (3D) trajectory of the CME. Starting from a magnetic configuration that closely resembles the potential field extrapolation for that date, we performed numerical magneto-hydrodynamics (MHD) simulations. By applying localized shearing motions, a CME is initiated in the simulation, showing a similar non-radial evolution, structure, and velocity as the observed event. The CME gets deflected towards the current sheet of the larger northern helmet streamer, due to an imbalance in the magnetic pressure and tension forces and finally it gets into the streamer and propagates along the heliospheric current sheet.
2012
Coronal mass ejections; Sun: corona; Sun: magnetic fields
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/86688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact