In a previous paper [1] we have studied the coexistence of coupled 2DEG and 3DEG in the proximity of a silicon-oxide interface in a MOSFET devising a hydrodynamical model obtained by taking the moment of the kinetic transport equation and by resorting to the maximum entropy principle for the closure relations. Here we classify the model from the point of view of PDEs by showing that it is hyperbolic in the relevant physical region of density, energy, velocity and energy fluxes in each subband and bulk electrons.

MATHEMATICAL STRUCTURE OF THE TRANSPORT EQUATIONS FOR COUPLED 2D-3D ELECTRON GASSES IN A MOSFET.

V. D. Camiola;ROMANO, Vittorio
2013-01-01

Abstract

In a previous paper [1] we have studied the coexistence of coupled 2DEG and 3DEG in the proximity of a silicon-oxide interface in a MOSFET devising a hydrodynamical model obtained by taking the moment of the kinetic transport equation and by resorting to the maximum entropy principle for the closure relations. Here we classify the model from the point of view of PDEs by showing that it is hyperbolic in the relevant physical region of density, energy, velocity and energy fluxes in each subband and bulk electrons.
2013
2DEG-3DEG coupling; hydrodynamical models; quantum transport in semiconductors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/87209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact