In this paper we present a covariance based tracking algorithm for intelligent video analysis to assist marine biologists in understanding the complex marine ecosystem in the Ken-Ding sub-tropical coral reef in Taiwan by processing underwater real-time videos recorded in open ocean. One of the most important aspects of marine biology research is the investigation of fish trajectories to identify events of interest such as fish preying, mating, schooling, etc. This task, of course, requires a reliable tracking algorithm able to deal with 1) the difficulties of following fish that have multiple degrees of freedom and 2) the possible varying conditions of the underwater environment. To accommodate these needs, we have developed a tracking algorithm that exploits covariance representation to describe the object's appearance and statistical information and also to join different types of features such as location, color intensities, derivatives, etc. The accuracy of the algorithm was evaluated by using hand-labeled ground truth data on 30000 frames belonging to ten different videos, achieving an average performance of about 94%, estimated using multiple ratios that provide indication on how good is a tracking algorithm both globally (e.g. counting objects in a fixed range of time) and locally (e.g. in distinguish occlusions among objects).

Covariance based fish tracking in real-life underwater environment

SPAMPINATO, CONCETTO;Palazzo S;GIORDANO, Daniela;
2012-01-01

Abstract

In this paper we present a covariance based tracking algorithm for intelligent video analysis to assist marine biologists in understanding the complex marine ecosystem in the Ken-Ding sub-tropical coral reef in Taiwan by processing underwater real-time videos recorded in open ocean. One of the most important aspects of marine biology research is the investigation of fish trajectories to identify events of interest such as fish preying, mating, schooling, etc. This task, of course, requires a reliable tracking algorithm able to deal with 1) the difficulties of following fish that have multiple degrees of freedom and 2) the possible varying conditions of the underwater environment. To accommodate these needs, we have developed a tracking algorithm that exploits covariance representation to describe the object's appearance and statistical information and also to join different types of features such as location, color intensities, derivatives, etc. The accuracy of the algorithm was evaluated by using hand-labeled ground truth data on 30000 frames belonging to ten different videos, achieving an average performance of about 94%, estimated using multiple ratios that provide indication on how good is a tracking algorithm both globally (e.g. counting objects in a fixed range of time) and locally (e.g. in distinguish occlusions among objects).
2012
978-989856504-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/90353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? ND
social impact