We present a decision procedure for a quantified fragment of set theory involving ordered pairs and some operators to manipulate them. When our decision procedure is applied to formulae in this fragment whose quantifier prefixes have length bounded by a fixed constant, it runs in nondeterministic polynomial-time. Related to this fragment, we also introduce a description logic which provides an unusually large set of constructs, such as, for instance, Boolean constructs among roles. The set-theoretic nature of the description logics semantics yields a straightforward reduction of the knowledge base consistency problem to the satisfiability problem for formulae of our fragment with quantifier prefixes of length at most 2, from which the NP-completeness of reasoning in this novel description logic follows. Finally, we extend this reduction to cope also with SWRL rules.
A Decidable Quantified Fragment of Set Theory Involving Ordered Pairs with Applications to Description Logics
CANTONE, Domenico;NICOLOSI ASMUNDO, MARIANNA
2011-01-01
Abstract
We present a decision procedure for a quantified fragment of set theory involving ordered pairs and some operators to manipulate them. When our decision procedure is applied to formulae in this fragment whose quantifier prefixes have length bounded by a fixed constant, it runs in nondeterministic polynomial-time. Related to this fragment, we also introduce a description logic which provides an unusually large set of constructs, such as, for instance, Boolean constructs among roles. The set-theoretic nature of the description logics semantics yields a straightforward reduction of the knowledge base consistency problem to the satisfiability problem for formulae of our fragment with quantifier prefixes of length at most 2, from which the NP-completeness of reasoning in this novel description logic follows. Finally, we extend this reduction to cope also with SWRL rules.File | Dimensione | Formato | |
---|---|---|---|
CSL2011.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
605.06 kB
Formato
Adobe PDF
|
605.06 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.