The representation model that considers an image as a sparse linear combination of few atoms of a predefined or learned dictionary has received considerable attention in recent years. Among the others, the Structured Sparse Model Selection (SSMS) was recently introduced. This model outperforms different state-of-the-art algorithms in a number of imaging tasks (e.g., denoising, deblurring, inpainting). Despite the high denoising performances achieved by SSMS have been demonstrated, the compression issues has been not considered during the evaluation. In this paper we study the performances of SSMS under lossy JPEG compression. Experiments have shown that the SSMS method is able to restore compressed noisy images with a significant margin, both in terms of PSNR and SSIM quality measure, even though the original framework is not tuned for the specific task of compression. Quantitative and qualitative results pointed out that SSMS is able to perform both denoising and compression artifacts reduction (e.g., deblocking), by demonstrating the promise of sparse coding methods in application where different computational engines are combined to generate a signal (e.g., Imaging Generation Pipeline of single sensor devices).

On the application of structured sparse model selection to JPEG compressed images

FARINELLA, GIOVANNI MARIA;BATTIATO, SEBASTIANO
2011-01-01

Abstract

The representation model that considers an image as a sparse linear combination of few atoms of a predefined or learned dictionary has received considerable attention in recent years. Among the others, the Structured Sparse Model Selection (SSMS) was recently introduced. This model outperforms different state-of-the-art algorithms in a number of imaging tasks (e.g., denoising, deblurring, inpainting). Despite the high denoising performances achieved by SSMS have been demonstrated, the compression issues has been not considered during the evaluation. In this paper we study the performances of SSMS under lossy JPEG compression. Experiments have shown that the SSMS method is able to restore compressed noisy images with a significant margin, both in terms of PSNR and SSIM quality measure, even though the original framework is not tuned for the specific task of compression. Quantitative and qualitative results pointed out that SSMS is able to perform both denoising and compression artifacts reduction (e.g., deblocking), by demonstrating the promise of sparse coding methods in application where different computational engines are combined to generate a signal (e.g., Imaging Generation Pipeline of single sensor devices).
2011
978-364220403-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/93169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact