L’interaction cinématique poteau-terrain c’est un phénomène amplement étudié par les chercheurs pendant les dernières années: les raisons de cet intérêt sont dûes aux effets que cette interaction a sur les poteaux des fondations, qui, à l’occasion d’événements sismiques, sont soumis à des états “tensio-déformés” qui vont dangeureusement s’additionner aux états “tensio-déformés” amenés par les actions provenant de la superstructure (interaction inertielle). Cela justifie beuacoup de dommages relevés dans les poteaux après un événement sismique. L’Eurocode 8, aussi que les Nouvelles règles Techniques Italiennes ordonnent de projeter les poteaux des foundations, en tenant compte non seulement de la bonne note interaction inertielle, mais aussi de l’interaction cinématique poteauterrain pour des types de terrain des fondations, pour des terrains sismiques et selon l’importance de la structure à éléver. Par la méthode des soustructures il est possible d’étudier à part l’interaction inertielle et l’interaction cinématique et, donc, d’appliquer le principe de la superposition des effets. Presque tous les études sur l’interaction cinématique poteau-terrain ont été, jusqu’ici, adressées vers l’analyse de la conduite d’un poteau plongé dans un terrain avec une seule irrégularité stratigraphique. Cet article veut présenter les résultats principaux d’une étude d’interaction cinématique pour un seul poteau plongé dans un terrain avec deux irregularités, ou dans un terrain homogène dans lequel se trouve une couche de differente rigidité. Le système poteau terrain est analysé par un modelage FEM tridimensionnel. La réponse du poteau est examinée surtout en termes de moments fléchissants des agents tout au long du fût du poteau et en particulier, en correspondence des irregularités stratigraphiques du terrain et au sommet du poteau. On analyse des differents épaisseurs de la couche intermédiaire et des differentes valeurs de vitesse des ondes de découpage de cette couche intermédiaire. Le système, caracterisé par un comportement élastique linéaire est soumis à trois differents “accelerogrammes” enregistrés, gravis en amplitude à 1m/s 2, et appliqués à la base du modèle (lit rigide). Les résultas nous indiquent l’importance de reconnaitre aussi des minces draps de terrain, dont le relèvement raté peut determiner une dangereuse sous-estime du moment fléchissant non seulement au niveau des irregularités stratigraphiques mais aussi au niveau du sommet du poteau. Le contenu en fréquence de l’input sismique joue, lui aussi, un rôle très important sur la réponse sismique du poteau.
The kinematic soil-pile interaction is a phenomenon deeply studied by national and international researchers in last decades: the reason for this interest lies in the effects that it has on foundation piles which, under seismic loads, are subjected to significant stresses and strains, that have to be added to those caused by inertial actions coming from the superstructure, to justify some pile damage. Both the EC8 and the new Italian Technical Regulations prescribe to take into account both the types of interactions in relations to: soil conditions, area seismicity, importance of structures. Thanks to the “method of substructures” it is possible to study the two kinematic and inertial effects separately and then considering their overlap. All the studies have been generally related only to soil profiles with one stiffness discontinuity. This paper shows the main results of a kinematic interaction study carried out on a single pile foundation, embedded in a soil constituted by two stiffness discontinuities, i.e. in an homogeneous soil deposit within is located a midway soil layer of different stiffness. The soil-pile system is analysed by a 3-D FEM model; kinematic bending moments, which occur along the whole pile and in particular at the depths of the soil stiffness discontinuities and at the pile head, are analysed, for different values of thickness and stiffness of the midway layer. The system, characterized by a linear-elastic behaviour, is subjected to three different accelerograms, scaled up to an amplitude equal to 1 m/s2, and applied at the base of the model (bedrock). The results show that to not discover thin midway layers, during the soil characterization phase, can lead to a very dangerous underestimation of bending moments not only at the soil discontinuity depth, but also at the pile head. Input motion frequency content also plays an important role
Soil-pile kinematic interaction in an homogeneous deposit within a midway layer is located
MASSIMINO, MARIA ROSSELLA
2011-01-01
Abstract
The kinematic soil-pile interaction is a phenomenon deeply studied by national and international researchers in last decades: the reason for this interest lies in the effects that it has on foundation piles which, under seismic loads, are subjected to significant stresses and strains, that have to be added to those caused by inertial actions coming from the superstructure, to justify some pile damage. Both the EC8 and the new Italian Technical Regulations prescribe to take into account both the types of interactions in relations to: soil conditions, area seismicity, importance of structures. Thanks to the “method of substructures” it is possible to study the two kinematic and inertial effects separately and then considering their overlap. All the studies have been generally related only to soil profiles with one stiffness discontinuity. This paper shows the main results of a kinematic interaction study carried out on a single pile foundation, embedded in a soil constituted by two stiffness discontinuities, i.e. in an homogeneous soil deposit within is located a midway soil layer of different stiffness. The soil-pile system is analysed by a 3-D FEM model; kinematic bending moments, which occur along the whole pile and in particular at the depths of the soil stiffness discontinuities and at the pile head, are analysed, for different values of thickness and stiffness of the midway layer. The system, characterized by a linear-elastic behaviour, is subjected to three different accelerograms, scaled up to an amplitude equal to 1 m/s2, and applied at the base of the model (bedrock). The results show that to not discover thin midway layers, during the soil characterization phase, can lead to a very dangerous underestimation of bending moments not only at the soil discontinuity depth, but also at the pile head. Input motion frequency content also plays an important roleI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.