The aim of this paper is to propose a computational model, inspired by Drosophila melanogaster, able to handle problems related to motor learning. The role of the Mushroom Bodies and the Central Complex in solving this problem is analyzed and plausible biologically inspired models are proposed. The designed computational models have been evaluated in simulation using a dynamic structure inspired by the fruit fly. The obtained results open the way to new neurobiological experiments focused to better understand the underlined mechanisms involved, to verify the feasibility of the hypotheses formulated and the significance of the obtained results

A spiking network for body size learning inspired by the fruit fly

Arena P.;DI MAURO, GIUSEPPE;Patane L.;
2013-01-01

Abstract

The aim of this paper is to propose a computational model, inspired by Drosophila melanogaster, able to handle problems related to motor learning. The role of the Mushroom Bodies and the Central Complex in solving this problem is analyzed and plausible biologically inspired models are proposed. The designed computational models have been evaluated in simulation using a dynamic structure inspired by the fruit fly. The obtained results open the way to new neurobiological experiments focused to better understand the underlined mechanisms involved, to verify the feasibility of the hypotheses formulated and the significance of the obtained results
2013
Biologically inspired models; Drosophila melanogaster,; Computational model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/96089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
social impact