In this paper we propose an implicit relevance feedback method with the aim to improve the performance of known Content Based Image Retrieval (CBIR) systems by re-ranking the retrieved images according to users' eye gaze data. This represents a new mechanism for implicit relevance feedback, in fact usually the sources taken into account for image retrieval are based on the natural behavior of the user in his/her environment estimated by analyzing mouse and keyboard interactions. In detail, after the retrieval of the images by querying CBIRs with a keyword, our system computes the most salient regions (where users look with a greater interest) of the retrieved images by gathering data from an unobtrusive eye tracker, such as Tobii T60. According to the features, in terms of color, texture, of these relevant regions our system is able to re-rank the images, initially, retrieved by the CBIR. Performance evaluation, carried out on a set of 30 users by using Google Images and "pyramid" like keyword, shows that about the 87% of the users is more satisfied of the output images when the re-raking is applied. © 2010 ACM

Visual attention for implicit relevance feedback in a content based image retrieval

GIORDANO, Daniela;SPAMPINATO, CONCETTO
2010-01-01

Abstract

In this paper we propose an implicit relevance feedback method with the aim to improve the performance of known Content Based Image Retrieval (CBIR) systems by re-ranking the retrieved images according to users' eye gaze data. This represents a new mechanism for implicit relevance feedback, in fact usually the sources taken into account for image retrieval are based on the natural behavior of the user in his/her environment estimated by analyzing mouse and keyboard interactions. In detail, after the retrieval of the images by querying CBIRs with a keyword, our system computes the most salient regions (where users look with a greater interest) of the retrieved images by gathering data from an unobtrusive eye tracker, such as Tobii T60. According to the features, in terms of color, texture, of these relevant regions our system is able to re-rank the images, initially, retrieved by the CBIR. Performance evaluation, carried out on a set of 30 users by using Google Images and "pyramid" like keyword, shows that about the 87% of the users is more satisfied of the output images when the re-raking is applied. © 2010 ACM
2010
978-1-60558-994-7
Eye controlled devices; Information retrieval; Visual communication
File in questo prodotto:
File Dimensione Formato  
ETRA2010-relevancefeedback.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 4.87 MB
Formato Adobe PDF
4.87 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/98618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact