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The role of the NADPH oxidase derived brain oxidative stress in the
cocaine-related death associated with excited delirium: A literature
review
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H I G H L I G H T S

� Excited Delirium Syndrome is commonly associated to cocaine abuse.
� The pathophysiology of this syndrome is complex and not yet fully understood.
� Increased reactive oxygen species production by the NADPH oxidase NOX enzymes might play a crucial role.
� Data from animal models and human evidence are discussed in this review.
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A B S T R A C T

Excited delirium syndrome (ExDS) is a term used to describe a clinical condition characterized by bizarre
and aggressive behaviour, commonly associated with the use of psychoactive compounds, especially
cocaine. The pathophysiology of ExDS is complex and not yet fully understood. In addition to a central
dopamine hypothesis, other mechanisms are thought to be involved in cocaine-related ExDS, such as
increased reactive oxygen species production by the family of the NADPH oxidase NOX enzymes. In this
review, we will summarize current knowledge on the crucial contribution of brain NADPH oxidase
derived oxidative stress in the development of cocaine-induced ExDS. Data from animal models as well as
human evidence will be discussed.
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1. Introduction

Excited delirium syndrome (ExDS) is a term used to describe a
clinical condition characterized by bizarre and aggressive behav-
iour, commonly associated with the use of psychoactive
Abbreviations: ExDS, Excited delirium syndrome; NADPH, Nicotinamide adenine
dinucleotide phosphate; ROS, Reactive Oxygen Species; GABA, Gamma-AminoBu-
tyric Acid; HSP, Heat Shock Protein; 17-DMAG, 17-Dimethylaminoethylamino-17-
demethoxygeldanamycin; NF-kB, Nuclear factor kappa-light-chain-enhancer of
activated B cells; GSH, Glutathione; MDMA, 3,4-methylenedioxy-methamphet-
amine; MAP kinase, Mitogen-activated protein kinase; ERK, Extracellular signal-
regulated kinases; i-NOS, inducible nitric oxide synthase; Bcl-2, B-cell lymphoma 2;
SMAC, Second mitochondria-derived activator of caspases; DIABLO, Diablo
homolog.
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compounds, especially cocaine (Lipsedge, 2015; Gerold et al.,
2015). ExDS is still a controversial issue which has provoked heated
debate among physicians and pathologists, even concerning its
existence (Gill, 2014a; Vilke et al., 2012a; Paquette, 2003; Michaud,
2013; Kodikara et al., 2012; Takeuchi et al., 2011; Grant et al.,
2009a; Vilke et al., 2012c). The main clinical characteristics of ExDS
are delirium with evidence of psychomotor excitation, hostility,
physical violence, bizarreness, ranting, paranoia, panic, public
disturbance, surprising physical strength, profuse sweating due to
hyperthermia, and respiratory arrest (Beer and Beer, 2013). Deaths
from this syndrome are infrequent (Gerold et al., 2015) and
currently there is no clear explanation why some subjects progress
to death and why some do not (Michaud, 2013). The pathophysi-
ology of ExDS is complex and not yet fully understood. Stimulant
drug use, especially cocaine, is associated with ExDS (Bunai et al.,
2008; Gruszecki et al., 2005; Escobedo et al., 1991; Ruttenber et al.,
1999a; Ho et al., 2009; Mirchandani et al., 1994). In addition to a

http://crossmark.crossref.org/dialog/?doi=10.1016/j.toxlet.2016.06.002&domain=pdf
mailto:stefania.schiavone@unifg.it
http://dx.doi.org/10.1016/j.toxlet.2016.06.002
http://dx.doi.org/10.1016/j.toxlet.2016.06.002
http://www.sciencedirect.com/science/journal/03784274
www.elsevier.com/locate/toxlet


30 S. Schiavone et al. / Toxicology Letters 258 (2016) 29–35
central dopamine hypothesis in the pathogenesis of ExDS (Vilke
et al., 2012b), other mechanisms are thought to be involved in
cocaine-related ExDS (Michaud, 2013). In recent years, alterations
of the stress response system, as well as increased reactive oxygen
species (ROS) production, have been implicated in the pathogene-
sis and development of cocaine-induced ExDS (Mirchandani et al.,
1994; Pudiak and Bozarth, 1994).

Because of the circumstances surrounding death, and the lack of
a definitive cause on autopsy, the validity of the term ‘excited
delirium’ has been considered controversial and is still not
universally accepted (O'Sullivan et al., 2014). This argument
mainly relates to the fact that most organized medical associations,
including the International Classification of Disease, Ninth Revi-
sion (ICD-9) do not recognize the exact term ‘excited delirium’ or
‘ExDS’. However, the National Association of Medical Examiners
and the American College of Emergency Physicians, the physicians
most likely to encounter these patients, do recognize ExDS as a
discrete diagnostic entity (Vilke et al., 2012a). From an epidemio-
logical point of view, it is particularly difficult to determine the
exact incidence of the ExDS, first of all because there is no current
standardized definition of this syndrome but also because excited
delirium is described in the forensic literature mainly as a
diagnosis of exclusion at autopsy (Plush et al., 2015). An
observational study suggests that the incidence of death among
patients manifesting signs and symptoms that may be consistent
with excited delirium is <10% (Barnett et al., 2012). These deaths
appear to be caused by several restraint-related factors, such as
hyperthermia, hypoxia, positional asphyxia, aspirational pneumo-
nia, use of capsicum spray by police staff and Taser use, which has
been shown to increase the risk of fatality, especially when used on
a subject with pre-existing cardiac problems or suffering from
psychostimulant toxicity and/or psychosis or extreme panic states
(Gill, 2014b; Grant et al., 2009b). More than 95% of all published
fatal cases involve men at a mean age of 36 years (Bunai et al.,
2008; Allam and Noble, 2001). This is probably due to the fact that
the highest prevalence rates of cocaine intoxications are observed
in male subjects between the age of 25 and 44 years (Vroegop et al.,
2009; Pope et al., 2011) and that, in the same class of age, cocaine-
induced psychiatric symptoms, such as anxiety, panic disorders,
paranoia and psychotic states, which may rapidly convert in an
agitated delirium, more frequently occur (Falck et al., 2004; Tang
et al., 2007). Concerning the risks related to the physical
examination or assessment of subjects with ExDS, one of the
most relevant one is undoubtedly represented by suicidal behavior
(Vilke et al., 2012c; Otahbachi, 2010; Mohr et al., 2003) which
should be constantly considered and carefully evaluated by
clinicians.

In the 1980s, there was a dramatic increase in the number of
reported cases with behaviour similar to an uncontrolled
psychiatric emergency. Most of these cases were found to be
associated with the introduction and abuse of cocaine in North
America (Fishbain and Wetli, 1981; Wetli, 1987). Since then, the
pathogenetic link between excited delirium and cocaine has been
taken into consideration (Grant et al., 2009a; Ruttenber et al.,1997;
Wetli and Fishbain, 1985; Sztajnkrycer and Baez, 2005; O'Halloran
and Lewman, 1993; Otahbachi et al., 2010; Pollanen et al., 1998;
Ross, 1998; Wetli and Mittlemann, 1981). Additionally, excited
delirium has now been associated with other illicit psychoactive
compounds, such as methamphetamine, and phencyclidine, as
well as with specific psychiatric conditions and their associated
pharmacological treatment (Grant et al., 2009a; Stratton et al.,
2001).

This review aims to provide a summary of current toxicological
and forensic literature in order to define the role of brain NADPH
oxidase-derived oxidative stress in the pathogenesis of cocaine-
induced ExDS and to identify factors associated with sudden
unexpected death of individuals with symptoms of ExDS, for a
better understanding of this complex and debated syndrome. To
this purpose, we report data from animal models as well as from
human studies. In particular, we reviewed a total number of 133
studies, published in the last 35 years (1981–2015) on PubMed
(http://www.ncbi.nlm.nih.gov/pubmed), combining for the
searching two or more of the following keywords: excited
delirium; oxidative stress; NADPH oxidase; cocaine; reactive
oxygen species; brain; neurotransmitters; neurotoxicity.

2. Aetiology and pathophysiology of excited delirium: the role
of cocaine

Although current knowledge about the aetiology and patho-
physiology of excited delirium appears limited, pre-clinical and
clinical studies have provided some new insights. It has been
widely demonstrated that psychostimulant drugs and in particular
cocaine might be the leading cause of excited delirium (Gruszecki
et al., 2005; Ho et al., 2013; Hall et al., 2013; Shields et al., 2015).
Thus, post mortem toxicological analysis of fatal cocaine-associated
deaths in patients with symptoms of excited delirium has shown
cocaine concentrations similar to those found in recreational drug
users and less than those noted in acute cocaine ‘overdose’ deaths,
clearly suggesting a different death mechanism (Michaud, 2013;
Vilke et al., 2012b). The cellular and neurochemical changes
induced by cocaine abuse in subjects with symptoms of excited
delirium have so far been the subject of lively scientific debate.
Using ligand binding and autoradiographic methods, abnormali-
ties in the dopaminergic system and in particular alterations in D1,
D2 and D3 dopamine receptors and in the cocaine's ability to block
the reuptake pump or ‘transporter’ by which dopamine is recycled
back to the nerve terminal have been identified (Staley et al., 1994;
Staley et al., 1995). The appeal of the central dopamine hypothesis
lies in the fact that hypothalamic dopamine receptors are
responsible for thermoregulation. Disturbances of dopamine
neurotransmission may help to explain the profound hyperther-
mia noted in many patients with symptoms of excited delirium
(Ruttenber et al., 1999a). In particular, several reports have
suggested that, in case of cocaine-induced ExDS, the abuse of this
psychoactive compound leads to alterations of dopamine process-
ing in the mesolimbic pathway in the brain, resulting in
hyperactivity and hyperthermia (Ruttenber et al., 1999b; Staley
et al., 1997). Furtheron, dopamine processing has been shown to be
altered in individuals with ExDS. In these subjects, decreased levels
of a-synuclein in the substantia nigra, as well as an increased
expression of this protein in the ventral tegmental area, have been
reported (Takeuchi et al., 2011). Multiple studies have also
documented an elevation of dopamine transporter binding sites
in chronic cocaine users with symptoms of ExDS (Little et al., 1998;
Wilson et al., 1996). The functional activity of dopamine trans-
porters was also found to be elevated in the limbic system of
subjects suffering from cocaine-induced ExDS(Mash and Staley,
1999; Schmauss et al., 1993). The dopamine hypothesis also
provides a link to psychiatric aetiologies of excited delirium, such
as schizophrenia (Detweiler et al., 2009). Alterations of the stress
response system have also been implicated in the pathogenesis
and development of cocaine-induced excited delirium (Mirchan-
dani et al., 1994; Pudiak and Bozarth, 1994). In particular, it has
been shown that corticosterone and other stress-associated
hormones may potentiate cocaine-induced psychomotor stimu-
lant effects. More specifically, cocaine-induced HPA axis function-
ing alterations may affect catecholamine release, in particular
dopamine and adrenaline. This leads to increased blood pressure,
with an elevated risk of fatal stroke or heart attack. Further,
cocaine-induced alterations of the stress response can lead to
rhabdomyolysis, with consequent release of myoglobin into the
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bloodstream and deterioration of kidney function (Cador et al.,
1993; Piazza et al., 1991).

3. The role of the NADPH oxidase-derived oxidative stress in
ExDS pathogenesis

Together with the dopaminergic hypothesis, new pathogenetic
mechanisms are emerging for the pathogenesis of excited delirium
(Gill, 2014a). Recent literature evidence is in favour of cocaine-
induced neurotoxicity via production of a large amount of ROS or
reduction of antioxidant systems, with consequent increased
oxidative stress in the central nervous system (CNS) (Pedrajas et al.,
2015; Uys et al., 2011; Sordi et al., 2014; Muriach et al., 2010).

One of the main source of ROS production in the CNS is
represented by the family of the NADPH oxidase NOX enzymes,
which are proteins that transfer electrons across biological
membranes, producing superoxide. This family includes seven
members (i.e., NOX1-5 and DUOX1-2), with distinct tissue
distribution and mechanisms of activation (Bedard and Krause,
2007). In the CNS, the NADPH oxidase 2 enzyme (NOX2) is involved
in cell fate and modulation of neuronal activity (Infanger et al.,
2006). From a pathological point of view, NOX2-derived increase of
oxidative stress is thought to play a crucial role in several brain
disorders, such as neurodegenerative diseases and psychiatric
disorders (Sorce and Krause, 2009).

In particular, some reports on rodent models have shown a
pathological association between cocaine-induced ROS production
and increased expression of the NADPH oxidase NOX2, as well as its
regulatory subunits (Fan et al., 2009; Isabelle et al., 2007). Some
evidence points towards the pathogenetic role of NOX2-derived
oxidative stress in psychoactive compound-induced neurobeha-
vioural alterations. In this context, we and others have previously
demonstrated the crucial role of the NOX2 enzyme in the
development of molecular, neurochemical and behavioural alter-
ations induced by mice exposure to sub-anaesthetic doses of
ketamine (Behrens et al., 2007; Sorce et al., 2010; Behrens et al.,
2008). Other Authors have reported the role of NOX2-derived
oxidative stress in neurochemical and neuromorphological
changes induced by other psychoactive compounds such as
metamphetamine, steroids and opioids. In particular, it has been
shown that NOX2-derived ROS might be responsible for metham-
phetamine-induced dopamine-releasing and locomotor-activating
properties, given the evidence that subchronic treatment with
apocynin, an antioxidant/NOX inhibitor compound, significantly
and dose-dependently decreased methamphetamine’s potency
and efficacy to evoke [(3)H]overflow (Miller et al., 2014). With
respect to steroids, Chinaglia and co-workers recently demon-
strated that testosterone induces leucocyte migration via NADPH
oxidase-derived ROS and that testosterone administration was
able to increase, in turn, NADPH oxidase activity and expression. In
support of these observations, apocynin treatment suppressed
testosterone-induced NADPH oxidase activation (Chignalia et al.,
2015). In the same line, it was recently reported that NOX2 or
Table 1
Alterations of GABAergic system induced by increased oxidative stress.

ALTERATIONS INDUCED BY INCREASED OXIDATIVE STRESS 

Changes in gene expression in GABAergic spiny cells 

Increase in the basal levels of extracellular GABA in the nucleus accumbens 

Depression in GABAergic transmission by favoring dopamine release from nigrostria
Loss of phenotype of fast-spiking GABAergic interneurons 
p47phox (one of its catalytic subunit) knock-out mice developed
the same antinociceptive tolerance as wild type mice, following
continuous morphine administration(Doyle et al., 2013).

Previous evidence supports a crucial role of increased oxidative
stress in GABAergic neuronal subpopulation in the pathogenesis of
excited delirium induced by cocaine or other psychostimulant
drugs, such as ketamine (Takeuchi et al., 2011). Details on this
aspect are presented in Table 1.

Together with GABAergic neurons, astrocytes are also known to
be potential targets of drug abuse like cocaine, which acts on this
cell population by altering their in vivo morphology, size and
physiological functioning (Araque, 2006; Fattore et al., 2002).
Importantly, astrocytes appear to be particularly vulnerable to
redox status. Thus, they contain higher levels of GSH compared to
other cell type in the brain (Dringen, 2000) and might early
respond to detrimental external stimuli, such as abuse of
psychoactive compounds, by very high production of ROS (Deigner
et al., 2000; LaRowe et al., 2006). Thirdly, very recent findings show
that pre-treatment of astroglia-like cells with the clinically
available antioxidant N-acetyl cysteine mitigates the acute effects
of cocaine-induced toxicity in this cell line (Badisa et al., 2015).

The exact molecular mechanism linking increased NOX2-
derived oxidative and cocaine-induced neurotoxicity is not fully
understood yet. Increased expression and activation of specific
heat shock proteins (HSP), as well as alterations of NF-kB signaling,
elevation in protein nitrosylation and iNOS expression and
functioning have been reported. Details on these proposed
mechanisms are provided in Table 2.

Several studies indicated that cocaine exposure induces
apoptosis in different tissues (Cerretani et al., 2012; Blanco-Calvo
et al., 2014). Also, cocaine neurotoxicity has been associated with
the induction of biochemical features of apoptosis, such as
activation of caspases (Dey et al., 2007; Cunha-Oliveira et al.,
2006; Imam et al., 2005; Rego and Oliveira, 2003; Mitchell and
Snyder-Keller, 2003), loss of mitochondrial potential and cyto-
chrome c release (Cunha-Oliveira et al., 2006; Rego and Oliveira,
2003). Cocaine was also reported to upregulate the content of some
pro-apoptotic mitochondrial proteins in cultured cells and brain
tissue (Cunha-Oliveira et al., 2008; Cunha-Oliveira et al., 2010).
Controversially, other Authors reported the absence of apoptosis
after cocaine exposure in brain (Dominguez-Escriba et al., 2006;
Alvaro-Bartolome et al., 2011). The aforementioned differences
could possibly depend on the tissue, cocaine concentration/
duration, animal models used, etc (Lopez-Pedrajas et al., 2015).

In this context, it has been widely demonstrated that oxidative
stress induces cellular damage and, eventually, cell death
(Calabrese et al., 2007). On the other hand, cell death induced
by cocaine in human neuronal progenitor cells seems to be
preceded by oxidative stress increase (Poon et al., 2007). Numerous
studies indicate that Bcl-2 is involved in opposing cell death
induced by oxidative stimuli (Susnow et al., 2009). In an interesting
paper by Hochman and co-workers, Authors demonstrated
enhanced oxidative stress and susceptibility to oxidants, as well
PSYCHOSTIMULANT DRUG REFERENCES

Cocaine (Nestler, 2001)
Cocaine (Xi et al., 2003)

tal nerve terminals Cocaine (Centonze et al., 2002)
Ketamine (Behrens et al., 2007)



Table 2
Proposed mechanisms linking increased NOX2-derived oxidative and cocaine-induced neurotoxicity.

MECHANISMS FUNCTIONS REFERENCES

Increased expression of
HSP70 gene in the brain

- Response to hyperthermia (>39 �C) and ischemic stimuli
- Cytoprotection and cellular assembly
- Rapid response to altered redox state
- Redox status dependent regulatory activity on several organs
- Biomaker for the identification of excited delirium as cause of
death

- Biomarker of post-drug survival time and/or interventions by
medical and law enforcement personnel

- Biomarker of an adaptive response to limit cocaine-induced
ischemic neurotoxicity

(Mash et al., 2009; Riezzo et al., 2010; Lind et al., 2005; Johnson
et al., 2012; Kubo et al., 1998; Xiao et al., 2002; Chen et al., 2011)

Increased expression of
HSP90 gene in the brain

- NADPH oxidase subunits are HSP90 client proteins (interfer-
ence of 17-DMAG with ROS generation and reduction in pro-
oxidative factors)

(Madrigal-Matute et al., 2012)

Increased NF-kB activation in the
nucleus accumbens,
hippocampus and frontal
cortex

- Development of cocaine addiction via increased NADPH
oxidase-derived ROS in neurons and microglia

(Ang and Tergaonkar, 2007; Dello Russo et al., 2009; Yao et al.,
2010; Block et al., 2007)

Decreased NF-kB activity in the
frontal cortex

- Altered behaviour in cocaine-treated rats
- Reduced GSH concentration in hippocampus
- Reduced glutathione peroxidase activity in hippocampus
- Impairement of memory retrieval of experiences acquired
prior to cocaine administration

(Muriach et al., 2010)

Increased nitrotyrosine
expression

- Role in oxidative myocardial damage in human cocaine-
related cardiomyopathy

- Role in MDMA-induced neurotoxicity
- Protein nitrosylation mediated directly by NADPH oxidase via
activation of specific p38 and ERK1/2

(Xiao et al., 2005; Tanabe et al., 2012; Darwish et al., 2007;
Frustaci et al., 2015; James et al., 2003; Sautin et al., 2007)

Increased i-NOS expression and
functioning

- Development of neuropathological alterations in rodent
models of neurological disorders

- Development of neuropathological alterations in cocaine-
abuse

- Role in the cocaine-induced locomotor sensitization and
kindling

- Synergistic effect with activated microglia NADPH oxidase in
inducing neuronal death

- Synergistic effect with NADPH oxidase-dependent redox
signalling in microvascular endothelial cells

(Chang et al., 2002; Torreilles et al., 1999; Emerit et al., 2004; Hald
and Lotharius, 2005; Mendoza-Baumgart et al., 2004; Portugal-
Cohen et al., 2010; Park et al., 2001; Mander and Brown, 2005; Wu
et al., 2008)
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as altered levels of antioxidant enzymes in the brain of Bcl-2-
deficient mice, concluding that Bcl-2 affects cellular levels of ROS,
which may be due to an effect either on their production or on
antioxidant pathways (Hochman et al., 1998). A strong pathoge-
netic link between cocaine exposure and Bcl-2 up-regulation has
been previously reported. Indeed, it has been shown that Bcl-2
upregulation following prenatal cocaine exposure induces apo-
ptosis in fetal rat brain (Xiao and Zhang, 2008) and that cocaine-
mediated astrocytes toxicity involves Bcl-2 mediated cell death
(Cao et al., 2015). Interestingly, several studies showed that NADPH
oxidase activation accelerates apoptosis in different types of
human cells, including neurons, via Bcl-2-mediated pathways
(Lundqvist-Gustafsson and Bengtsson, 1999; Qin et al., 2006; Jana
and Pahan, 2004). Previous observations from our group and
others also reported an increased expression of SMAC/DIABLO
proapoptotic protein group in psychoactive compounds-induced
neurotoxicity (Riezzo et al., 2014; Cadet et al., 2003; Amaral et al.,
2013). Importantly, it has also been shown that NADPH oxidase-
derived ROS generation is able to induce the release of different
proapototic protein group, including Smac/Diablo (Fruehauf and
Meyskens,, 2007; Maianski et al., 2004).

A graphical summary of all the proposed NADPH oxidase-
induced pathogenetic mechanisms in the development of ExDS is
shown in Fig. 1.
4. Conclusion

Cocaine is a widely used substance of abuse; however, the
syndrome of cocaine-induced agitated delirium is rare and not yet
completely understood. Exact mechanisms behind this syndrome
are still poorly defined and why some subjects progress to death
and why some do not is not known.

A large body of evidence points towards a role of oxidative
stress in cocaine-induced brain alterations, suggesting that a
disruption of redox balance in the brain might be considered as a
crucial contributor in the pathogenesis of cocaine-related ExDS.
However, the involvement of other important pathogenetic
mechanisms in the development of cocaine-induced ExDS,
occurring both inside and outside the CNS, has to be considered.
In particular, among them, neuroinflammation and consequent
microglia activation, increased disruption of the blood brain
barrier and alterations of peripheral vascular permeability, as well
as altered HPA-axis responsivity might represent the most
significant ones. Therefore, further investigations will be needed
to clarify the neuropathophysiological changes present in ExDS
fatal cases and to elucidate ExDS pathophysiology in order to help
to determine whether fatal ExDS may be preventable, or whether a
point of no return may be detectable.



Fig. 1. NADPH oxidase-induced pathogenetic mechanisms involved in the development of cocaine-induced ExDS.
Psychostimulant drugs, such as cocaine, have been shown to induce an increased expression and activation of the NADPH oxidase NOX2. This leads, in turn, to possible
alterations of several systems. In particular, the GABAergic one is known to be affected, with consequent increase of free radical production in GABAergic neurons, changes in
gene expression, loss of phenotype in fast-spiking interneurons and alterations of GABAergic neurotransmission. Increased expression of HSP70, 27 and 90 has been also
observed as a consequence of cocaine-induced NOX2 increase. Other phenomena associated to the elevation of the NADPH oxidase NOX2 include alterations of NF-Kb
signaling, increased i-NOS expression, as well as nitrotyrosine and protein nytrosilation. Enhanced apoptotic processes, via increased Bcl-2 and SMAC/DIABLO expression,
have been also described, following cocaine-induced NOX2 elevation.
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5. Role of the funding source

The writing of this review was supported by FIR 2015–2018
from Apulia Region to S.S.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.
toxlet.2016.06.002.
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