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A new embodied motor-neuron architecture
Paolo Arena Senior, IEEE, Luca Patanè Member, IEEE, and Angelo G. Spinosa

Abstract—This paper introduces a novel bio-inspired motor
neuron dynamical unit where the neural dynamics, responsible
for the generation of the action potentials is embedded into the
actuator dynamics, which here plays the role of, and substitutes,
the recovery variable into the classical neuron equations. A
recently introduced nullcline-based control strategy, over servo-
motors embedded into piecewise linearly approximated FitzHugh
Nagumo neuron models, is here applied to the synchronization
of two embodied motor-neuron units in the form of either a
continuously active proportional gain or an event-driven strategy.
In view of the application to such problems as the generation
of adaptive control laws for distributed oscillatory networks,
at the basis of bio-inspired walking machines, the advantages
in terms of the reduced-order dynamical equations and ease of
synchronization are presented both through simulations and with
experiments devoted to control networked Dynamixel MX-28AT
servomotors via an MCU board.

Index Terms—Nonlinear oscillator, FHN neuron model, syn-
chronization, motor control

I. INTRODUCTION
Bio-inspired locomotion generation and control involve

physical and functional relationships among specific neural
circuits and the corresponding muscle activation, which gener-
ates leg periodic motion alternating between stance and swing
phases. Gait generation is also strongly connected with the
coordination among legs. Two main approaches followed in lit-
erature are often identified as Central Pattern Generator (CPG)
and Decentralized Locomotion Control (DLC). The former
considers coordinated locomotion activity as stereotyped and
imposed by the neural circuits, which can act, in principle,
independently of sensory feedback [1]. The latter presents the
gait as the dynamical solution emerging from reflex-based leg
motions joined to the definition of coordination rules: here
sensory feedback is needed to generate locomotion [2]–[5].
DLC strategies can also be developed based on multiple
CPGs where gait coordination and walking stability is
obtained using sensory feedback [6]. Further interactions
will include the interplay between the robot body and
limbs using cross-coupled sensory feedback [7], [8]. In
the following, an approach between CPG and DLC will be
presented, exploiting the advantages of both strategies. The
main novelty of the approach presented in this paper is that,
starting from considerations on the basics of the neural dynam-
ical behaviour, a completely new motor-neuron configuration
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is introduced, where neuron and motor act symbiotically: the
neuron dynamics lose one state variable, in details its recovery
one, which is directly drawn by the actuator dynamics. In this
way, the actuator is merged within the neural controller for
the realization of a new conceptual type of adaptive neuron
motor unit, called “embodied”. As a consequence, from the
one side, the neural controller needs the actuator feedback
to work properly (like the DLC), whereas, from the side of
the network perspective, the phase displacement is decided
in a master-slave configuration, as within the CPG archetype.
The new concept of embodied motor neuron unit differentiates
from CPG and DLC, since both take into main account the
neural controller side, independently of the actuation part.
Another important aspect of our approach is the extremely
reduced order of the whole motor neuron dynamical unit:
only one additional state variable is added to the actuator
dynamics (namely the neuron membrane potential) for control
purposes. The advantage increases in view of the typical
applications of neural control to bio-inspired robots which
possess multiple legs with multiple actuators and neural units,
often implementing a flexor-extensor control mode, which
further increases the dynamics order [9], [10].

A further interesting characteristic of our strategy is the
ease of synchronization control exploiting the modulation of
the system nullclines directly into the neuron motor phase
plane. In literature, a few approaches show some similarities
with ours [11]. These, however, do not consider several key
aspects of our approach, namely: the possibility to replace
the motor dynamics with, in principle, any actuator and the
implementation of a control strategy directly acting on the
neuron motor phase plane. The suitability in controlling not
only the single embedded actuator dynamics but also the phase
among different embodied units will be achieved through a
master-slave adaptive control rule implemented in the phase
plane [12], where the dynamic evolution can be suitably and
easily controlled. A relevant aspect is the control of the time
spent by the leg in the swing or the stance phase, which affects
the overall spiking frequency. Typically, models of biological
CPGs endow spiking neurons with some additional state
variables which slow the spiking frequency [10]. A biological
neuron can easily reach a firing frequency of 10Hz [13],
and even lower: for example, in the crustacean stomatogastric
neural ganglion, neurons can reach very low firing frequencies
(0.5-2Hz), to adapt to the actuation medium. In our model, we
can also easily speed up or slow down the neural oscillation
frequency. This property largely helps to adapt the neuron
dynamics to the actuator one. Following the strategy presented
in [12], the neuron dynamics adaptation is faced by adopting
a Piecewise linear (PWL) version of the Fitz-Hugh Nagumo
(FHN) neuron, together with a control action developed within
the phase plane. The modulation of the nullcline position is
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used to directly control the time spent in such regions of the
phase plane corresponding to the stance/swing phase of the
leg motion. The embodiment and master-slave adaptive phase
plane control will be demonstrated through a hardware setup,
using a simple adaptation control law, and exploiting the model
of a commercial servomotor.

II. EMBODIED NEURON MODELS: MATHEMATICAL TOOLS

An embodied neuron is here formalised as an augmented
N + 1-order system which embeds an N -order sub-system,
corresponding to the “body” of a more articulated unit. Let XL
and XN be the two-state spaces of the neural and embedded
parts, respectively. Thereby, neural and embedded state func-
tions are described as a scalar function F : XL ×XN → XL,
and a vector function G : XL × XN → XN , respectively. On
the whole, an (augmented) embodied model can be described
as follows:

εv̇ = F(v,yf ) ∈ XL : dim(XL) = 1
ẏ = G(v,y) ∈ XN : dim(XN ) = N
yf = H(y) ∈ XM : dim(XM) = M ≤ N

(1)

where yf are feedback variables outputted by the embedded
system through a proper function H(y). In the following,
we can suppose XL ⊆ R, XN ⊆ RN and XM ⊆ RM
for simplicity. Moreover, 0 < ε � 1 accounts for the
relative speed of the neuron (fast) dynamics with respect to
the embedded (slow) one.

In our work, the second order dimensionless FHN [14], [15]
neuron model has been considered:{

εv̇ = f(v)− θ + I

θ̇ = v + a− bθ (2)

where ε plays the same role as in Eq. (1), determining
the slow and fast dynamics associated with the θ and v
state variables respectively. Moreover, a, b ∈ R are constant
parameters, I ∈ R is an external bias and f(v) is a cubic
function of the membrane potential. This nonlinearity can be
modelled through a suitable PWL approximation, consisting
in breaking the cubic curve into joined segments each having
its own slope. Therefore, if the number of segments is n+ 1
and the i-th slope is mi−1, then f(v) can be replaced with:

Πn(v)
.
= a0 + a1v +

n∑
i=1

bi |v − ei| (3)

where 
a1 = 0.5(m0 +mn)
bi = 0.5(mi −mi−1)
a0 = f(0)−

∑n
i=1 bi|ei|

f(0) ∈ R
ei ∈ R

(4)

with i ∈ {1, ..., n}. Parameters ei in Eq. (3) denote those
membrane potentials at which slopes change; they are ordered
so that ei−1 < ei, ∀i {1, ..., n}. Additionally, m0 (mn) refers
to the slope of the leftmost (rightmost) segment. To properly

Fig. 1: Phase portrait of a P-FHN neuron. The abscissa of
point B(D) corresponds to e1 (e2) in Eq.(5).

Fig. 2: Time evolution of the two P-FHN state variables.

model an FHN neuron, an approximated cubic function com-
posed of n+ 1 = 3 segments has been designed adopting the
following constraints: e1 < 0 < e2

m0,m2 < 0
m1 > 0

(5)

In this way, all the original existing fixed points and their
properties are preserved and thereby the original FHN and its
PWL approximation (denoted in the following as P-FHN) are
topologically equivalent.

Therefore, the original FHN neuron in Eq. (2) becomes a
P-FHN if:

f(v) = Π2(v) (6)

and then also a particular case of embodied model in Eq. (1),
if we fix:

yf = H(y) ≡ y ≡ θ (7)

and thereby:
F(v, θ) = Π2(v)− θ + I (8)

and
G(v, θ) = v + a− bθ (9)

III. THE NEURON-MOTOR EMBODIMENT

The phase portrait of the P-FHN model is shown in Fig. 1
where the classical slow-fast limit cycle is depicted. Here,
the role of each nullcline is evident. The intersection at the
origin of the first (cubic-like PWL) and the second (linear)
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nullcline, due to their relative slopes arrangement, assures
the existence of an unstable fixed point [16]. Any trajectory
starting nearby (e.g., point O in Fig.1) is repelled towards the
outer sides of the phase portrait: the fast state variable (i.e.,
membrane potential v) imposes a nearly horizontal escaping
direction to the trajectory until this one meets the left branch
of the PWL nullcline (point A). From here the trajectory
proceeds along this branch, obeying the decreasing flow of the
recovery variable θ, meeting the extreme left position (point
B). From here, trajectories are quickly pushed horizontally
towards the right outer branch of the PWL nullcline (point
C). Then they slowly proceed towards point D and so on.
It is interesting to observe the corresponding trend of the
two-state variables, depicted in Fig.2. This interplay between
variables v and θ is at the basis of the onset of the spiking
neural limit cycle dynamics in the P-FHN phase plane. From
these considerations, it is herewith proposed to substitute the
dynamics represented by the second nullcline with that one
of an energy user, like an actuator. In this case, the second
state variable θ could be the physical position assumed by the
“user”, leaving to the first variable v the role of the “supplier”.
This is congruent also with the linear and positive slope of the
second nullcline in the phase plane (v, θ).

In the following, the proposed strategy is applied to a
commercially available servo motor, although the whole
approach can be adopted using other types of actuators,
whose motion takes place at the expense of the energy
released by the neuron.

A. Dynamixel MX-28AT modelling and embedding
Dynamixel motors are smart actuators, widely used in

robotics, made up of an electromechanical part, constituted
by a DC motor with a gear-based reduction system, and an
MCU-based controller system. They are used in this paper
both to demonstrate our embodiment concept and to indicate
the most direct application through a phase-locking strategy
on networks of embodied motor-neuron nodes.

Referring to Eq.(1), the scalar state variable and the asso-
ciated PWL nonlinearity are associated with the v variable,
and the function F , respectively. A proper embedded system
function G, representing the actuator dynamics, has to be
introduced.
A first attempt to obtain an accurate model for Dynamixel
motors was proposed in [17], together with a list of key
parameters reported in Table I, partially drawn from the motor
data sheet and useful for our simulations [18]. In the following,
we consider the electromechanical part and the PID controller
embedded into the actuator, separately.

The former is given by a DC motor with reduction gear
characterised by the following transfer function [17]:

Θ(s)

U(s)
=

τηKt

s(as2 + bs+ c)
(10)

where a = L(Jl + Jmτ
2η), b = R(Jl + Jmτ

2η) + Lbmτ
2η

and c = bmτ
2ηR+ Ktτ

2η
Kω

.
In Eq. (10), Θ(s) = L{yf}, stands for the Laplace

transform of yf introduced in Eq.(1) and corresponds to the

motor angular displacement at the load side of the motor
gearbox, whereas U(s) is the output of the PID controller
output embedded into the servomotor.

A Dynamixel actuator, as a whole, can be controlled both
in speed (wheel mode) and in position (servo mode). In our
simulations and experiments, we employed the wheel mode
control, whereas the information used in the neural sub-system
is the motor position θ(t). The servomotor internal speed error
function with respect to the speed reference signal ωRef(s)
represents the input to the PID controller:

E(s) = ωRef(s)− ω(s) (11)

Dynamixel motors cannot handle all possible input sources
owing to the intrinsic limitations at the input stage. Let umin
and umax be the minimum and maximum values for u(t),
respectively. Therefore, the PID processes the error E(s) and
provides a saturated output signal as reported below:

u(t)
.
= min(max(L−1 {YPID(s)} , umin), umax) (12)

In our case, the feedback variable corresponds to the motor
position, yf defined as:

yf = H(y) ≡ θ (13)

so that it holds:

F(v, θ) = Π2(v)− θ + θ0 (14)

and

ωRef(t)
.
= v(t)− b(θ(t)− θ0) (15)

where the parameter a in Eq.(2) corresponds to a = b · θ0 and
the position offset θ0, corresponding to the bias I , reflects the
average angular excursion:

θ0 =
θmax + θmin

2
(16)

Furthermore, the middle PWL nullcline segment m1 (BD
in Fig.1) is bounded within the region delimited by the pre-
defined break-points (e1 and e2 in Fig.1) and the correspond-
ing angle limits θmax and θmin, resulting in:

m1 =
θmax − θmin

e2 − e1
(17)

In the following, the adopted PWL neuron model with
an embedded Dynamixel motor will be referred to as P-
Dynamixel. Fig.3 depicts a simple network of two embodied
neurons, where the role played by the neural and motor
sub-parts and their connections are depicted. The interaction
between two motor-neuron units, based on a master-slave
topology, is also reported and further detailed in Section III-B
and V.
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Fig. 3: Block scheme describing the connections between two
embodied neurons when a master-slave topology is adopted.
The position offset (θ0) is a desired angular reference around
which the motor oscillates.

Dynamixel MX-28 AT
Parameter Value

Reduction ratio τ 193
Gear efficiency η 0.836
Resistance R 8.3 Ω
Inductance L 2.03e-3 H
Inertia Jm 8.68e-8 kgm2

Friction bm 8.87e-7 Nm/(rad/s)
Torque constant Kt 0.0107 Nm/A
Motor back-electromotive constant Kω 93.1 (rad/s)/V
[umin, umax] [−12, 12] V
Proportional gain Kp 4
Integral gain Ki 0
Derivative gain Kd 0

TABLE I: List of the parameters employed for simulations.

B. Networks of embodied neurons

We have introduced isolated, single embodied models in
the previous section. However, the emergence of more inter-
esting and complex phenomena arises when multiple units are
networked together, as in the case of CPGs. Although many
networking strategies are possible, in this context we assume
that nodes are linked together in a master-slave topology,
where the slave nodes are compelled to track the activity
of the master node. Because of the master-slave setting, the
resulting topology is a tree graph with directed edges from the
master to every slave. Weights among nodes represent phase
displacements with respect to the master unit.
Let Q be the number of uncoupled embodied units and suppose
∃!m̄ ∈ I .

= {1, ..., Q} which corresponds to the index of the
master node. Conversely, ∃S .

= {i ∈ I|i 6= m̄} which is the
set of all the indices referred to slave nodes. Thus, a concise
Q-dimensional vector can be introduced to represent how the
oscillators should be coupled in phase:

h
.
= [φ1, · · · , φQ] ∈ [0, 2π]

Q (18)

φm̄ = 0 by definition, whereas all the other values correspond
to phase displacements imposed to every slave node.

The problem of synchronization will be faced mainly from
the experimental side. However, such important issues like

Fig. 4: Comparison between the angular positions of a sim-
ulated and a real master servomotor. Results before (a) and
after (b) the parameter optimization phase, performed acting
on the nominal reduction ratio, are reported.

stability and robustness are worth being investigated and
are currently an active theme of research, above all given
the embedded nature of the whole neuron motor system. In
literature, among the different existing methods, the authors
are currently investigating the application of partial contraction
theory, as a suitable tool to formally and rigorously address
stability in this family of embedded networked motor neuron
architectures [19], [20].

IV. DESCRIPTION OF THE EXPERIMENTAL SETUP

The embodiment framework illustrated so far was exten-
sively assessed through several simulation campaigns. Subse-
quently, the corresponding experimental setup was designed
and built. A preliminary identification phase was performed
to assess if the motor model parameters duly matched those
ones effectively embedded into the real motors. The results,
reported in Fig.4 (a), show that the model output (Eq.10) and
the real motor output showed the same dynamics, but a slightly
different steady-state oscillation period. This discrepancy was
compensated by adding a multiplicative factor ∆τ = 1.813 to
the nominal reduction ratio τ . This optimised value was ob-
tained through the Dynamic Time Warping (DTW) algorithm
[21]. Results obtained with this correction are shown in Fig.4
(b).

Our experimental setup, depicted in Fig.5, comprises two
nodes, each one consisting of a servomotor endowed with
a rod (the longer one attached to the master), used as a
visual reference for the motor oscillations. The motors are
connected to an Arduino MEGA 2560 through a tri-state buffer
DM74LS241N. Communication from and to the Arduino
board is serial with a baud rate set to 1Mbps. Because of
the number of nodes, in this particular setup, Eq. (18) reduces
to h = [0, φ] if the first entry is related to the master.
In our experiments, the sampling time for the neural equation
within the board was set to ts = 8ms, by taking into account
the time needed to integrate the motor dynamics. Moreover,
the parameter ε in Eq. (1) was set to ε = 0.025.

V. SIMULATION AND EXPERIMENTAL TESTS

This section provides the experimental results mostly carried
out with the hardware-based setup. In particular, four main
scenarios were considered, referring to two different kinds of
control actions, (taking place continuously or at specific time
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Fig. 5: Hardware-based setup for experimental tests.

instants) and two parametric configurations (i.e., identical and
different) between the master and slave system. For the sake
of simplicity, the zero-phase and anti-phase synchronization
tasks were considered, even if the strategy can be applied to
any desired phase shift between master and slave. A simple
proportional rule over the master-slave phase error was found
suitable in most cases to guarantee synchronization. However,
in case of failure, a proportional-integral law was successfully
adopted.

To address the synchronization issue even in presence of an
appreciable difference in the oscillation period between master
and slave, the strategy has consisted of changing the shape of
the phase portrait and in particular, the most external slopes
of the PWL nullcline, as in [12]. Since the slopes change the
period in an affine form, the relationship slope-period is easily
invertible; Slopes of nullclines have been modified in several
manners. The continuous control action has taken the form of
a proportional gain α applied over a pairwise phase error. In
particular, slopes have incrementally changed according to the
following updating rule:

mi,j-th slave ← mi,master + α× phase errorj (19)

where mi,j-th slave (mi,master) is either the leftmost or rightmost
slope of the j-th slave (master), thereby i ∈ {0, 2} only and
j ∈ S, and:

phase errorj
.
= arctan

(
θmaster

vmaster

)
−arctan

(
θj-th slave

vj-th slave

)
−φj (20)

This equation defines the error as the vector difference
between the positions of the master and the slave over the
v-θ phase portrait, whilst φj is one of the entries in h given
by Eq. (18). Eq. (19) can be applied either continuously or
when specific events are triggered, but the update rule does not
change formally. Although the relationship between nullclines
and the resulting period of oscillation is a quite known topic
[22], their precise manipulation in certain regions can be
difficult: through the PWL approximation, nonlinear branches
are linearised so that the resulting slopes, which are still related
to the period of oscillation, are easily modifiable.

Table II lists the parameters employed for those experiments
with networked P-Dynamixels with the same phase portrait
(scenarios 1 and 3), whereas Table III reports those ones for
P-Dynamixels with different phase portraits (scenarios 2 and
4).

Parameters for scenarios 1 and 3:
master and slave with equal phase portraits

Parameter Value
Excursion [θmin, θmax] [rad] [−0.8, 0.8]
Break-points [e1, e2] [−1.6, 1.6]
Initial slopes [m0,m2] [−2,−2]
Gain b 0.8
ε 0.025
Measured period of the master T [s] 2.1956
Gain α 4

TABLE II: List of the parameters employed for both scenario
1 and scenario 3.

Parameters for scenario 2 and 4:
master and slave with different phase portraits

Parameter Value
Excursion [θmin, θmax] [rad] [−0.8, 0.8]
Break-points [e1, e2] [−1.6, 1.6]
Slopes of the master [m0,m2] [−4,−4]
Initial slopes of the slave [m0,m2] [−1,−1]
Gain b 0.8
ε 0.025
Measured period of the master T [s] 2.2931
Gain α 7.5

TABLE III: List of the parameters employed for both scenario
2 and scenario 4.

All the following scenarios will take into account one master
and one slave, therefore, the subscript representing the phase
of the slave system will be omitted.

A. Scenario 1: Continuous control action with equal phase
portraits

Here, even if the master ad slave systems have the same
parameters, phases may differ due to different initial con-
ditions. Eq. (19) can be applied to adjust either one or
both the external slopes of the slave node. For zero-phase
synchronisation task (φ = 2π), an example of real signals
produced by two networked P-Dynamixels is shown in Fig.6.
The effects of the proportional control action are sufficient
to lead the slave activity to track the master because of the
continuously changing of the leftmost slope (according to
Eq. (19)). The lowest panel in Fig.6 shows the phase error
which becomes negligible almost everywhere, except during
the “jumps”, occurring around the PWL corners.

Fig. 7 displays the acquired variables from our experimental
setup in the anti-phase synchronization task (φ = π). A
longer transient is here needed before reaching the anti-
phase condition. Despite being effectively always active and
therefore capable of correcting errors at every time, energy
costs can be high and even numerical problems may arise
while updating the slopes.
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Fig. 6: Zero-phase synchronisation in real networked P-
Dynamixels with equal phase portraits undergoing a contin-
uous control action.

Fig. 7: Anti-phase synchronisation in real networked P-
Dynamixels with equal phase portraits undergoing a contin-
uous control action.

B. Scenario 2: Continuous control action with different phase
portraits

When the master and slave phase portraits differ, the control
action ought to be sufficiently robust for proper compensa-
tion. To reproduce this disturbance in the node dynamics we
modified some parameters with respect to the test performed
before.
The signals acquired from the experimental setup for zero-
phase synchronization are shown in Fig.8. Notwithstanding
the discrepancy between the models, the control law action in
Eq.(19) succeeds in reaching the master-slave synchronisation
condition.

Fig.9 is an example test carried out to achieve anti-
phase synchronisation. The largest error is present during the
jumping interval. The effects of two distinct sets of PWL
parameters are mostly clear over the membrane potential-like
state variable.

C. Scenario 3: Event-driven control action with equal phase
portrait

Differently from the continuous control case, to implement
an event-driven strategy the control law takes place at specific
time instants (events) where the neuron state variable changes
its sign. In our experiments, the event was triggered by the
falling edge of the neuron state variable, i.e. the time when
the master state variable becomes negative [12]. In terms of

Fig. 8: Zero-phase synchronisation in real networked P-
Dynamixels with different phase portraits undergoing a con-
tinuous control action.

Fig. 9: Anti-phase synchronisation in real networked P-
Dynamixels with different phase portraits undergoing a con-
tinuous control action.

computational costs and energy efforts, this corresponds to
an energy-saving technique, which aims at performing phase-
locking control only when needed, revealing less impactful
than a continuously operative control as well as the previously
presented strategy. Energy and time efficiency are sensible
problems addressed in literature also with the introduction of
memristive nanodevices for controlling a humanoid robot [23],
[24].

Moreover, the event-driven control can contribute to saving
computational cost and bandwidth in typical edge computing
architectures. Here, when a distributed network of position-
controlled actuators has to be synchronised with a unique
master system, the event-driven control requires a master-slave
communication only at specific time instants, whereas the
continuous controller would implement a continuous master-
slave communication.
However, the zero-phase synchronisation task, in this case,
has required more time to be effective. Fig.10 shows the main
variables in detail drawn from our real experimental setup.
What is really remarkable is the way the controlled slope,
and therefore the phase error, changes in time: in the case of
an event-driven control, both these variables have behaved as
step-like time-varying functions. The phase error is detected
and compensated only at specific times.

We have tested the event-driven strategy with two networked
systems in the anti-phase synchronisation regime too, obtain-
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Fig. 10: Zero-phase synchronisation with an event-driven
control through the real experimental setup, using two nodes
with the same phase portrait. Snapshots show the real hardware
setup: one master (longer rod) and one slave (shorter rod). A
video is provided in the supplementary material.
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Fig. 11: Zero-phase synchronisation in real networked P-
Dynamixels with different phase portraits undergoing an event-
driven control.

ing similar results to those reported for the other cases.

D. Scenario 4: Event-driven control action with different
phase portraits

To differentiate the nodes within the network, we have
changed the external slopes of the master, as performed in
Scenario 2.
Despite being a critical case, the event-driven approach has
been capable of handling zero-phase synchronisation tasks
easily, even though PWL functions have been supposed to
differ. Fig. 11 graphically reports these results.

Anti-phase synchronisation tasks have shown to be quite
affordable, no matter the approach. However, when having
different PWL functions an event-driven control sometimes
fails to guarantee the phase requirements. Fig.12 shows the
results drawn from real experiments, which show difficulties
in reaching and maintaining acceptable performance.

This suggests looking for more sophisticated control laws
with respect to Eq.(19), but which would require a more
powerful hardware setup. At this aim, we employed the
simulated model, identified in Section IV.

Therefore we extended Eq.(19) to include an integral part,
so that slopes are changed as follows:

mi,j-th slave ← mi,j-th slave+α×phase errorj+ς×time errorj (21)

Fig. 12: Anti-phase synchronisation in real networked P-
Dynamixels with different phase portraits undergoing an event-
driven control.

Fig. 13: Example of anti-phase synchronisation using the
simulated model with an event-driven control strategy through
the employment of Eq. (21).

where time errorj
.
= T̂master−T̂j-th slave is the error between

the period of oscillation computed when simulating Eq.(10) for
the master and the slave systems. Two main differences are
clear: instead of updating mi of the j-th slave by applying a
proportional action referred to the slope mi of the master, Eq.
(21) takes into consideration the previous value of mi of the j-
th slave itself so that the effect is integral. Additionally, another
weighted term takes into account the relative difference of
periods between the master and the j-th slave. Here we have
chosen α = 0.8 and ς = 10. Moreover, control action has
taken place twice, one for each external slope. In this way,
even large phase differences were compensated.
Fig.13 depicts the results obtained applying Eq. (21) when
handling an anti-phase synchronisation task with two simu-
lated networked P-Dynamixels with different PWL functions.
Even though the phase error has kept oscillating throughout
the whole simulation, the additional effect due to the time error
(Eq. (21)) was able to lead both the controlled slopes of the
slave towards the reference ones given by the master.

It has to be remarked that the event-driven control strategy
is less energy demanding but typically requires a longer time
to achieve synchronization than the continuous control law.
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VI. CONCLUSIONS

In this paper, a new bio-inspired motor neuron embodied
system oriented to networked systems synchronization and,
in particular, to locomotion control has been introduced. The
original idea is to host the actuator dynamics directly within,
and as a part of, the neuron dynamics. At this aim, a PWL
representation of an FHN neuron was adopted, where the
dynamics can be directly and easily controlled in the phase
plane, through the modulation of the whole embodied system
nullclines. The embodiment of the motor dynamics is realised
through the inclusion of the dynamics of the actuator within
the phase plane of the neuron, substituting part of the neural
dynamics with part of the actuator one. This led to a reduction
in the overall dynamical order of the neuron-motor control
system. The actuator taken into account in this paper refers to
the well known Dynamixel servomotor family, widely used in
robotics. They were here experimentally employed to generate
oscillatory motion in an embodiment framework, under the
direct control of PWL approximated nonlinear oscillators.
Results confirm that, like our case of actuators, it is possible to
include multiple, not strictly neural, dynamics within a neural
sub-system to enhance it and provide more functionalities.
The strategy was demonstrated both via a simple experimental
setup and using a model of the actuator, embedded into the
neuron dynamics for synchronization purposes. The model
was suitably tuned to match the experimental outcome using
an optimization algorithm. Being the whole work oriented
to the locomotion control of legged machines, the results
obtained open the way to novel, reduced-order and efficient
ways for adaptive, light and actuator feedback-based neural
pattern generators for bio-inspired robots. In virtue of the
results achieved it has been outlined that the strategy adopted
is quite general and can be extended to different families of
actuators or, in general of embedded dynamics. Moreover,
these achievements can open new methods for embodied
control in different application fields. The direct one regards
highly adaptive locomotion controllers for legged machines.
Also, the PWL embodied neuron can be easily integrated for
large scale microactuator devices which could be able to act as
adaptive space distributed smart structures (adaptive MEMS).
In addition, learning strategies could be added to the proposed
strategy to enhance the adaptive capabilities beyond a simple
proportional/integral control. The capability to react to even
high parametric changes can lead to new families of compliant
devices able to adapt to the dynamics of the actuator.

ACKNOWLEDGMENT

The authors acknowledge Eng. Andrea Bonanzinga contri-
bution in the earliest implementation of the experimental setup.

REFERENCES

[1] E. Arena, P. Arena, and L. Patanè, “CPG-based locomotion generation
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