This paper presents a Fault Detection and Isolation (FDI) approach based on the use of Hybrid Dynamic Bayesian Networks (HDBN). The peculiarity of the proposed approach is that an analytical dynamic model of the process to be monitored is not required. Instead it is hypothesized that input/output measures performed on the considered process during different working conditions, including faults, are available. In the paper the proposed FDI approach is described and the performances are evaluated on synthetic and real data supplied by a standard benchmark consisting of an hydraulic actuators available in literature. The goodness of the proposed approach is assessed by using appropriate performance indices. An intercomparison between the BN approach and an other approach, namely a Multilayer Perceptron (MLP) neural network is given. Results show that the BN approach outperforms the MLP approach in some indices but it requires a high design and computational effort.

A BAYESIAN NETWORK APPROACH FOR A FAULT DETECTION AND ISOLATION CASE STUDY

NUNNARI, Giuseppe;
2006-01-01

Abstract

This paper presents a Fault Detection and Isolation (FDI) approach based on the use of Hybrid Dynamic Bayesian Networks (HDBN). The peculiarity of the proposed approach is that an analytical dynamic model of the process to be monitored is not required. Instead it is hypothesized that input/output measures performed on the considered process during different working conditions, including faults, are available. In the paper the proposed FDI approach is described and the performances are evaluated on synthetic and real data supplied by a standard benchmark consisting of an hydraulic actuators available in literature. The goodness of the proposed approach is assessed by using appropriate performance indices. An intercomparison between the BN approach and an other approach, namely a Multilayer Perceptron (MLP) neural network is given. Results show that the BN approach outperforms the MLP approach in some indices but it requires a high design and computational effort.
2006
3-540-31649-3
Fault Detection and Isolation, Dynamic Bayesian networks, DAMADICS
File in questo prodotto:
File Dimensione Formato  
WSC9-Fault_stampato_su_Proceedings.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 147.16 kB
Formato Adobe PDF
147.16 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/104244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact